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The Impact of Data Limitations on the 
Statistical Reliability of Mortality 
Improvement Rate Estimates 

Section 1: Overview 

Estimating historical mortality trends—which this report refers to as “mortality improvement rates”—is 

statistically challenging. The frequently cited rule-of-thumb that 1,082 deaths are needed to achieve a 

credible mortality rate estimate is not applicable to improvement rate estimation. This rule-of-thumb 

assumes that a single rate, rather than the ratio of two rates, is being estimated. To produce a statistically 

meaningful estimate of a mortality improvement rate, a larger pool of data is required. This report 

examines how the number of persons (“lives”) covered in a mortality study, and the length of the study 

period (in years), affects the reliability of improvement rate estimates. In addition, the report examines 

practical strategies for addressing data limitations, such as estimating improvement rates by age group 

instead of by single age, as well as smoothing results across single ages.  

This report quantifies mortality improvement using a geometric rate of change. Across two consecutive 

years of mortality rates, the geometric rate of mortality improvement is equal to 100% minus the year-two 

mortality rate divided by the year-one mortality rate. For example, given mortality rates of 1.00% and 

0.98% in 2016 and 2017 respectively, the mortality improvement rate is 100% minus 0.98% divided by 

1.00%, which yields a result of 2.0%. A positive rate of improvement indicates that mortality rates are 

declining across time, while a negative improvement rate indicates that mortality rates are increasing. 

With respect to credibility, a confidence interval for a mortality rate estimate can easily be calculated using 

basic statistical theory. For example, using simple mathematics, one can demonstrate that given 1,082 

observed deaths, and given a small value of “q” (the observed mortality rate), there is a 90% chance that 

the true value of q falls within 5% of the observed value. 

In contrast, the credibility of an estimated improvement rate (“MI rate”) is more challenging to determine 

from first principles, particularly if three or more years of estimated mortality rates are used to produce the 

MI rate estimate. An exact formula for the credibility of an estimated MI rate is not possible in most 

situations, and approximations must therefore be introduced. An alternative approach—used to produce 

the results in this report—is stochastic simulation. As described briefly in Section 3.1 of this report, and in 

detail in the Appendix, stochastic simulation of mortality rates across many independent trials can facilitate 

the construction of MI rate confidence intervals.  
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The advantage of simulation is that it sidesteps the need for complex mathematics (that may involve 

approximations), providing an easy means to assess the reliability of MI estimates. However, confidence 

intervals generated from simulation differ from traditional confidential intervals. A traditional confidence 

interval (“CI”) is a concrete mathematical truth that originates from first principles. In contrast, a CI 

produced via simulation is an estimate that gradually converges with the true value as the number of 

stochastic trials goes to infinity. For a simulation approach, the observed data alone is insufficient; rather, a 

simulation is required to assess the statistical reliability of the observed data. 

Throughout this report, the term “confidence interval” refers to a distribution of MI errors generated via 

stochastic simulation, and margin-of-error (MOE) refers to half of the width of the confidence interval.  

Key findings of this report include the following: 

• The MOE for an MI rate estimate is inversely proportional to the number of years in the study, and 

inversely proportional to the square root of observed deaths (recall that a confidence interval is the 

estimated value, plus/minus the MOE). 

• Given a mortality dataset consisting of only two consecutive years of data and 1,082 observed deaths 

per year, the resulting MI rate estimate will have an MOE of about 7.0% at 90% statistical confidence 

(note that the MOE varies slightly as a function of assumed MI rate, but this variation is trivial). For 

example, if the estimated MI rate is 1.0%, then there is a 90% chance that the true MI value falls 

between negative 6.0% and positive 8.0%. Clearly this estimate lacks statistical robustness, and would, 

therefore, be a poor guide for setting a mortality improvement assumption.  

• A reliable MI rate estimate—that is, an estimate with a small MOE—requires a large dataset in terms 

of observed deaths. To achieve an MOE of 0.5% at 90% confidence using five years of recent data 

would require over 10,000 observed deaths per year. To decrease the MOE to 0.1% (given five years of 

data) would require over 250,000 observed deaths per year.  

• Smoothing or pooling mortality data across ages is a helpful strategy for addressing data limitations, 

but mortality researchers must be mindful that MI rates are not constant as a function of age. 

Consequently, there are logical limits to the extent to which smoothing or pooling can be employed. 

• Given the challenge of developing reliable MI estimates, practitioners may wish to examine the MI 

estimates generated by the SOA Research Institute’s Mortality Improvement Model, as well as 

estimates generated by the U.S. Individual Life Mortality Improvement Analysis Tool, each of which 

make use of datasets that cover tens of millions of lives. 

  

https://www.soa.org/resources/research-reports/2023/mortality-improvement-model/
https://www.soa.org/resources/research-reports/2024/ind-life-mort-tools/
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Section 2:  The Statistical Reliability of Mortality Rate Estimates 

A fair coin flipped N times is not likely to produce an estimate of the probability of heads (“p”) equal to 

exactly 50%. However, the larger the value of N, the greater the chance that the estimate of p—denoted as 

p̂—will be close to its true value. This is illustrated in Figure 1, which presents the probability distribution of 

p̂ for three different values of N: 

Figure 1 

PROBABILITY DISTRIBUTION OF P̂ FOR A FAIR COIN, AS A FUNCTION OF NUMBER OF TOSSES 

 

The greater the number of tosses used to estimate p, the tighter the distribution of potential estimates. 

The distribution of p̂ has a mean equal to the true value of p, and a standard deviation that is inversely 

proportional to the square root of N. Therefore, increasing N from 100 to 10,000 reduces the standard 

deviation of the estimator by 90% (because the square root of 10,000 is 10 times larger than the square 

root of 100). 

The same mathematical logic is applicable to the estimation of a mortality rate. Consider N lives of the 

same age, sex, and initial health status observed across a 12-month period. For analytical purposes, it is 

convenient to assume that each life has the same mortality risk (just as each coin toss has the same 

probability of heads), and to assume that the observations are independent. The mortality rate (q) is 

estimated as the number of observed deaths divided by N. As in the coin toss example, the estimator, q̂, 

has a mean equal to the true value of q, and a standard deviation that is inversely proportional to the 

square root of N. 

Of particular importance is the ratio of the estimator’s standard deviation to its expected value. The lower 

this ratio, the lower will be the potential error of the estimator expressed as a percentage of the true value. 

The ratio of the estimator’s standard deviation to its expected value varies inversely with the square root of 

the expected number of deaths, as illustrated in Table 1 (notice that quadrupling the number of deaths 

leads to a halving of the ratio in row five). In addition, Table 1 illustrates how this ratio affects the statistical 

reliability of the estimator.  

The results in Table 1 were calculated using the Excel/VBA workbook that accompanies this report. Using 

the workbook, the results can be replicated by pressing the button labeled “Load Scenarios Used in the 

Report.” After loading the scenarios, the inputs and outputs associated with Table 1 will appear in columns 

“F” through “K” of the workbook.  
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Table 1 

RELIABIITY OF MORTALITY RATE ESTIMATES AS A FUNCTION OF DEATH COUNT  
  A1 B1 C1 A2 B2 C2 

1 “True” Mortality Rate (q) 1.00% 1.00% 1.00% 2.00% 2.00% 2.00% 

2 Lives  25,000 100,000 400,000 12,500 50,000 200,000 

3 Expected Deaths 250 1,000 4,000 250 1,000 4,000 
4 Stdev of Deaths 16 31 63 16 31 63 

5 Stdev / Expected Deaths 6.3% 3.1% 1.6% 6.3% 3.1% 1.6% 

6 Prob of Error < 1.0 Stdevs 68.3% 68.3% 68.3% 68.3% 68.3% 68.3% 

7 Prob of Error < 10% of q 88.8% 99.9% 100.0% 89.0% 99.9% 100.0% 

8 Prob of Error < 5% of q 57.3% 88.8% 99.9% 57.5% 89.0% 99.9% 

9 Prob of Error < 1% of q 12.6% 24.9% 47.5% 12.7% 25.1% 47.7% 

10 Prob of Error < 0.5% of q 6.3% 12.6% 24.9% 6.4% 12.7% 25.1% 

11 Prob of Error < 0.1% of q 1.3% 2.5% 5.1% 1.3% 2.5% 5.1% 

Rows 6 through 11 refer to the absolute value of the estimator’s relative error. For example, row 8 displays the probability 
that the estimated mortality rate falls between 95% and 105% of the true mortality rate. 

Table 1 contains six columns of results. For columns A1, B1, and C1, the true mortality rate is 1%, while for 

columns A2, B2, and C2, the true mortality rate is 2%. While the “2” columns have double the mortality 

rate of the corresponding “1” columns, they have half the number of lives. Consequently, A1 and A2 have 

the same number of expected deaths, and the same is true for B1 and B2, and for C1 and C2. Furthermore, 

the values in rows five through eleven are nearly identical for columns A1 and A2, B1 and B2, and C1 and 

C2 (a result that will be explained shortly).  

The greater the number of expected deaths (the product of rows one and two of Table 1), the greater the 

reliability of the estimated mortality rate (assuming that “reliability” is evaluated by examining percentage 

errors). This relationship arises because, as the number of expected deaths increases, the standard 

deviation of deaths declines relative to the expected number of deaths (see row five). A smaller relative 

standard deviation translates into higher probabilities that the estimate will fall close to the true value. For 

example, as indicated on row nine of the Table, with 250 expected deaths there is only a 12.6% chance that 

the estimated mortality rate will fall within 1% of the true value. This probability rises to nearly 25% given 

1,000 expected deaths, and to almost 50% given 4,000 expected deaths.  

Given 1,000 expected deaths (columns B1 and B2), there is an 89% probability (row eight) that the estimate 

will fall within 5% of its true value. An oft-cited rule-of-thumb is that 1,082 deaths are needed for full 

credibility. While not shown in the table, 1,082 deaths leads to a 90% confidence of an error of less than 

5% (which is the situation that underlies the derivation of this value). 

Regardless of the number of expected deaths, the estimator (q̂) will always have a non-zero standard 

deviation. Therefore, in a sense, the “true” value of q is unknowable: it is impossible to arrive at estimates 

that have no uncertainty. The goal of a mortality study is not to eliminate uncertainty, but rather to 

develop estimates that are sufficiently reliable or credible for their intended application.  
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Section 3:  The Statistical Reliability of Mortality Improvement Rate 

Estimates 

3.1 A SIMULATION TECHNIQUE FOR CALCULATING MI RATE CONFIDENCE INTERVALS 

Calculating an MI rate confidence interval is more complicated than calculating a confidence interval for a 

point-in-time mortality rate estimate. Working with the ratio of two random variables is complex, often 

leading to a need for approximations. Rather than derive an approximate formula, this section of the report 

focuses on the results of simulations. The MI rate confidence intervals presented herein were calculated 

using an Excel/VBA workbook developed by the SOA Research Institute. The workbook is available for 

download on this report’s web page. An overview of the workbook is provided in the report’s Appendix. 

Briefly, the workbook has parameters to specify the number of years of data in a mortality study, the 

exposure in each year, the initial mortality rate, and the MI rate. Using these parameters, a simulation is 

performed consisting of 100,000 independent stochastic trials. For each trial, a time series of mortality 

rates is simulated. The simulated mortality rates are independently generated and uncorrelated, each 

following a normal distribution with a mean equal to the assumed mortality rate (adjusted across time to 

reflect the assumed MI rate) and a standard deviation that is inversely proportional to the square root of 

exposure. From the simulated mortality rates, an MI rate is calculated. This rate can be viewed as an 

estimate, distinct from the assumed MI rate that underpins the simulation. For each trial, the gap between 

the assumed MI rate and the estimated MI rate is recorded. This gap constitutes an MI rate estimation 

error. Across 100,000 stochastic trials, the distribution of errors facilitates the construction of MI rate 

confidence intervals.  

An example is helpful for illustrating this concept. Using the Excel/VBA workbook, the following scenario 

was simulated across 100,000 stochastic trials: two consecutive years of data, each with exposure of one 

million; an assumed mortality rate of 1% in the first year, and an assumed MI rate of 2%. For each 

stochastic trial, these parameters are used to simulate two consecutive years of mortality rates, and an MI 

rate estimate is estimated from the simulated results. The estimated MI rate is equal to 100% minus the 

year-two simulated mortality rate divided by the year-one simulated mortality rate. For this example, 

across 100,000 stochastic trials, 90% of the estimated MI rates fall in the range of 0.4% to 3.6%. Relative to 

the true MI rate (assumed to be 2%, in this example), this interval runs from negative 1.6% to positive 

1.6%. Thus, the margin-of-error (MOE) at 90% confidence is 1.6%. This MOE can serve as an uncertainty 

estimate for a real-world analysis that shares the same data characteristics (two years of data, exposure of 

one million, initial observed mortality rate of 1%, and an estimated MI rate of 2%). 

3.2 RELIABILITY OF MI RATE ESTIMATES GIVEN TWO CONSECUTIVE YEARS OF MORTALITY DATA 

To estimate the rate at which mortality rates are changing across time, mortality estimates for different 

points in time must be compared against each other. The greater the number of years of data available, the 

greater the range of options and techniques for estimating improvement rates. As a starting point for 

discussion, it is useful to consider a simple case in which only two consecutive years of data are available. 

Given two years of data, the rate of annual improvement (MI) will be estimated as follows: 

MÎyear = 1 - q̂year / q̂year - 1  

For example, suppose that the estimated mortality rate for 65-year-old females is 1.00% in 2021 and 0.98% 

in 2022. Given this data, the estimated improvement rate would be 2%. The positive improvement rate 

indicates that the mortality rate declined across time (while a negative improvement rate would indicate 

that the mortality rate increased).   
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The MI confidence intervals presented in Table 2 assume (1) two consecutive years of data, each of which 

is used to derive a point-in-time mortality rate estimate, (2) the number of observed lives is equal across 

the two years of data, and (3) the observed lives are assumed to have roughly the same mortality risk (for 

example, the lives could consist of individuals of the same age, sex, and initial health status). All lives, both 

within and between years, are assumed to be independent. 

Table 2 

RELIABIITY OF MORTALITY IMPROVEMENT RATE ESTIMATES AS A FUNCTION OF ANNUAL DEATH COUNT  
 Expected Deaths  0.25K 1K 4K 16K 64K 256K 1024K 

1 Stdev of MI estimator 8.99% 4.46% 2.22% 1.11% 0.56% 0.28% 0.14% 

2 Margin-of-Error @ 90% 14.75% 7.33% 3.66% 1.83% 0.91% 0.46% 0.23% 

3 Prob of MI Error < 10% 73.87% 97.48% 100.00% 100.00% 100.00% 100.00% 100.00% 

4 Prob of MI Error < 5% 42.59% 73.88% 97.53% 100.00% 100.00% 100.00% 100.00% 

5 Prob of MI Error < 1% 8.95% 17.78% 34.69% 63.13% 92.79% 99.97% 100.00% 

6 Prob of MI Error < 0.5% 4.48% 8.95% 17.78% 34.69% 63.13% 92.79% 99.97% 

7 Prob of MI Error < 0.1% 0.91% 1.79% 3.59% 7.16% 14.27% 28.08% 52.80% 

The results in this table assume two consecutive years of mortality data, each of which is used to estimate a mortality rate. An 
improvement rate is obtained by comparing the two mortality rates. The MOE is half of the corresponding confidence interval. 
An MOE of 1% at 90% confidence means that there is a 90% probability that the true MI rate falls within 1% of the estimated 
rate; therefore, if the estimated MI rate is 2%, then 90% confidence interval would run from 1% to 3%. 

The results in Table 2 were generated using the Excel/VBA workbook that accompanies this report. To 

examine the inputs and outputs associated with Table 2, press the button labeled “Load Scenarios Used in 

the Report.” After pressing the button, the inputs and outputs for Table 2 will appear in columns “M” 

through “S.” Because results are stochastically generated using sequences of random numbers, and 

because these sequences change from one run to the next, simulation results will differ across runs. These 

differences, however, will be quite small because the workbook uses a minimum of 100,000 stochastic 

trials to analyze each scenario. The large number of trials ensures that the distribution of simulated results 

is statistically robust. 

The results in Table 2 were generated using an assumed MI rate of 2%. A change to the assumed MI rate 

leads to shifts in results, but the shifts are quite small. For example, in the “4K” column, changing the 

assumed MI rate from 2% to 0% causes the MOE (at 90% confidence) to drop from 3.66% to 3.61%. 

Row one of Table 2 reveals that the standard deviation of the MI rate estimator is roughly halved if the 

number of deaths is quadrupled. Or, to put it differently, the standard deviation of the MI estimator is 

proportional to the inverse of the square root of deaths. This is the same relationship observed in Table 1 

with respect to the estimator for a mortality rate. However, for an MI rate estimator, this relationship is 

approximate rather than exact.  

To better understand the results in Table 2, it is useful to consider a numerical example. Suppose that a 

two-year mortality study has an exposure of 100,000 lives in each year. Suppose that 1,010 deaths occur in 

the first year, yielding a mortality rate estimate of 1.01%, and 990 deaths in the second year, yielding a 

mortality rate estimate of 0.99%. The estimated rate of improvement is 2% (100% minus 0.99% / 1.01%).  

Because the number of deaths in each of the two years is close to 1,000, column “1K” in Table 2 can be 

used to assess the reliability of the MI estimate of 2%. According to row one of column 1k, the standard 

deviation of the MI rate estimator is about 4.5%. Row two indicates that there is a 90% chance that the 

true MI rate lies within 7.3% of the estimated value of 2%. Therefore, the 90% confidence interval runs 

from negative 5.3% to positive 9.3%.  

Rows three through seven in Table 2 provide additional insight into the reliability of an MI rate estimate. 

Applying the information in these rows to an MI rate estimate of 2% leads to the following confidence 

intervals: 
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• 1.8% chance that the true MI rate falls between 1.9% and 2.1%. 

• 8.9% chance that the true MI rate falls between 1.5% and 2.5%. 

• 17.8% chance that the true MI rate falls between 1.0% and 3.0%. 

• 73.9% chance that the true MI rate falls between –3.0% and 7.0%. 

• 97.5% chance that the true MI rate falls between –8.0% and 12.0%. 

Suppose that an insurer wishes to develop an MI rate that has a 90% chance of falling within 0.5% of the 

true level. Given this objective, 1,000 deaths are clearly insufficient because it provides merely an 8.9% 

chance of the estimated MI error being less than 0.5%. While not specifically shown in Table 2, the required 

number of deaths (per year) is greater than 200,000. This is a sobering result given that there are only 

about three million deaths in total each year in the United States.  

3.3 OPTIONS FOR ESTIMATING MI RATES GIVEN THREE OR MORE YEARS OF DATA 

The MI reliability metrics presented in Table 2 are based on merely two years of consecutive data. Given a 

longer study period, tighter confidence intervals can be achieved. The longer the study period, the greater 

the range of options and techniques for estimating MI rates. This report considers two options:  

1. Using the first and last year of data from an N-year study period to calculate an MI rate, while 

discarding the data from all other years. For example, if data is available from 2013 to 2018, MI 

rates would be calculated as follows: MI rate = 1 – ( q̂2018 / q̂2013) (1/5) 

2. Using all N-years of data as follows: take the natural log of each annual mortality rate; fit a 

regression to the time series of logged mortality rates; extract the slope of the regression line; the 

estimated MI rate is equal to the negative of the slope.  

Option one is explored in Section 3.4 and option two is explored in Section 3.5. Option one is easy to 

implement, and the first and last years of a mortality study are usually the most important with respect to 

understanding a mortality trend. However, option two leads to tighter MI confidence intervals because it 

utilizes all available data.  

3.4 ESTIMATION RELIABLITY USING FIRST AND LAST YEARS OF AN N-YEAR STUDY PERIOD 

Given N years of data, a simple MI estimation approach is to discard all data except for the first and last 

years, and to calculate the MI rate as follows: 

Estimated MI Rate = 100% - ( q̂last year / q̂first year) (1/N)      [N = last year – first year]  

Using this approach leads to the results shown in Tables 3 and 4. In each table, the “time interval” refers to 

the number of years separating two points in time. If the interval is one, then two consecutive years of data 

are used (for example, 2018 and 2019). If the interval is four years, then the two years of data are 

separated by a gap of four years (for example, 2015 and 2019). 
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The results in Tables 3 and 4 were calculated using the Excel/VBA workbook that accompanies this report. 

To examine the inputs and outputs associated with tables, press the button labeled “Load Scenarios Used 

in the Report.” After pressing this button, the inputs and outputs associated with column “64K” of Tables 3 

and 4 will appear in columns “U” through “Y” of the workbook. If you wish to produce the results for other 

columns of these tables, simply modify the exposure assumption in columns U through Y accordingly. For 

example, to replicate the results in column “16K,” the exposure levels used for the “64K” column must be 

reduced by 75%. 

Table 3 

MARGIN-OF-ERROR AT 90% CONFIDENCE FOR MORTALITY IMPROVEMENT RATE ESTIMATES 

Time 
Interval 
(Years) 

Deaths Per Year 

 0.25K 1K 4K 16K 64K 256K 1024K 

1 14.755% 7.333% 3.661% 1.830% 0.915% 0.457% 0.229% 

2 7.357% 3.664% 1.830% 0.915% 0.457% 0.229% 0.114% 

4 3.676% 1.832% 0.915% 0.457% 0.229% 0.114% 0.057% 

8 1.838% 0.916% 0.457% 0.229% 0.114% 0.057% 0.029% 
16 0.919% 0.458% 0.229% 0.114% 0.057% 0.029% 0.014% 

The results in this table are based on two years of mortality rate data, separated by the specified time interval.  

Table 4 

PROBABILILITY THAT MORTALITY IMPROVEMENT RATE ESTIMATE IS WITHIN 0.5% OF TRUE VALUE 

Time 
Interval 
(Years) 

Deaths Per Year 

 0.25K 1K 4K 16K 64K 256K 1024K 

1 4.48% 8.95% 17.78% 34.69% 63.13% 92.79% 99.97% 

2 8.95% 17.78% 34.69% 63.13% 92.79% 99.97% 100.00% 

4 17.78% 34.69% 63.13% 92.78% 99.97% 100.00% 100.00% 

8 34.68% 63.12% 92.78% 99.97% 100.00% 100.00% 100.00% 

16 63.07% 92.75% 99.97% 100.00% 100.00% 100.00% 100.00% 

The results in this table are based on two years of mortality rate data, separated by the specified time interval. 

The results in Table 3 reveal that the MOE is inversely proportional to the square root of the length of the 

period analyzed. Keep in mind that only the first and last years of the data are used to compute the MI 

rate. A doubling of the time interval leads to a halving of the MOE. In addition, as discussed earlier in this 

report, the MOE is inversely proportional to the square root of deaths—that is, quadrupling the number of 

deaths leads to approximately a 50% reduction of the MOE. These relationships are summarized in the 

following equation, with “K” a parameter that varies by level-of-statistical confidence: 

Margin-of-Error for MI Estimate = K / [Years * Deaths0.5] 

A caveat is that the greater the length of the period (in years), the less relevant the MI estimate is with 

respect to recent mortality improvement. A lengthy period will produce an MI estimate that summarizes 

long-run rather than short-run experience. If one’s goal is to estimate recent mortality improvement rates, 

then the analyzed period must be relatively short if the estimation technique assumes a constant MI rate.  

Alternatively, a more complex estimation approach could be used that produces MI estimates that change 

across time. Such an approach is used to develop the MP projection scale. However, this report focuses 

solely on simple approaches that assume MI rates that do not vary across time. 

  

https://www.soa.org/resources/experience-studies/2021/mortality-improvement-scale-mp-2021/
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3.5 ESTIMATION RELIABILITY USING ALL YEARS OF DATA FROM AN N-YEAR STUDY PERIOD 

In Section 3.4, MI rate estimates and confidence intervals were calculated using the first and last years of 

data from N-year periods. Alternatively, instead of discarding the data between a period’s end points, all 

years of data may be used as follows: (1) take the natural log of each annual mortality rate; (2) fit a 

regression to the time series of logged mortality rates; (3) extract the slope of the regression line; (4) and 

compute the estimated MI rate as 100% minus “e” raised to the result of step four (“e” is “Euler’s number, 

approximately equal to 2.718). For example, if step three produces a value of negative 2%, then the MI rate 

is equal to 100% minus e-2%, which yields a result of 1.98%.  

As illustrated in Figure 2, this approach leads to a reduction in the standard deviation of the MI estimator, 

relative to an approach in which only the first and last years of data are used for an N-year period. The 

lower the standard deviation of the MI estimator, the greater the reliability of MI estimates. 

Figure 2 

PERCENT REDUCTION IN STANDARD DEVIATION OF MORTALITY IMPROVEMENT RATE ESTIMATOR  

IF ALL YEARS OF AN N-YEAR PERIOD ARE USED RATHER THAN ONLY THE FIRST AND FINAL YEARS 

 

The results in this table were determined via stochastic simulation. For 100,000 stochastic trials, synthetic mortality data was 
generated under the assumption the “true” rate of mortality improvement is constant. For each stochastic scenario, the MI 
rate was estimated using (1) only the first and last years of synthetic data and (2) all years of data.  

The results in Figure 2 were calculated using the Excel/VBA workbook that accompanies this report. To 

examine the inputs and outputs associated with tables, press the “Load Scenarios” button. After pressing 

this button, the inputs and outputs associated with the 10-year column of Figure 2 will appear in columns 

“AA” and “AB” of the workbook. To produce the other results shown in Figure 2, adjust the parameter that 

specifies the gap between the first and last years of the simulated data.  

Suppose that data is available from 2014 to 2019, so the distance between the first and last time point is 

five years. For a five-year time interval, using all years of data leads to a 15% reduction in the MI estimator 

as opposed to simply using the first and last years of data. This translates into a 15% reduction in the width 

of MI rate confidence intervals.  
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3.6 PRACTICAL CONSIDERATIONS 

There are several factors to consider when using multiple years of experience data to estimate mortality 

improvement.  

One consideration is the homogeneity of the data. Across time, the demographic makeup of a dataset may 

change. For example, the average face amount of the policies may have increased substantially, or 

underwriting practices may have changed. Because of these changes, the observed mortality improvement 

may include a non-biometric element. Therefore, the practitioner should consider whether it is advisable to 

normalize the data if the objective is to estimate mortality improvement resulting from biometric causes 

only. 

Similarly, if ages are pooled into groups, the average age of a group may change across time. For example, 

if ages 60 to 69 are pooled together, the group’s average age may shift from 64.0 to 64.5 across a study 

period. An upward shift in the average age will tend to push the pooled mortality rate upwards, while a 

downward shift will have the opposite effect. This type of change should not be mistaken as mortality 

improvement or deterioration, because it is unrelated to shifts in age-specific mortality rates. Therefore, 

pooled mortality rates should be normalized so that they reflect a constant age distribution across time (a 

practice referred to as “age standardization”). 

A final consideration concerns the fact that the first and last years of mortality experience are of primary 

importance in estimating mortality improvement. The mortality rates for these years should be analyzed to 

see if they are anomalous vis-a-vis the other years of data. It may be necessary to exclude or adjust the 

experience of these years. 

Section 4:  An Illustrative Example Using National-Level Data  

Given that robust MI rate estimates demand a large dataset, it is worthwhile to assess what level of 

reliability can be achieved using a dataset that captures all deaths in the United States (U.S.). To this end, 

Figure 3 shows total deaths in the U.S. in 2017, separately by age and sex, using data from the Centers for 

Disease Control and Prevention (CDC). 

Figure 3 

TOTAL DEATHS IN THE UNITED STATES IN 2017, BY SEX AND AGE 

 
Source: the data used in this graph was downloaded from Centers for Disease Control and Prevention. 

Figures 4A and 4B translate the death counts in Figure 3 into MI rate margins-of-error at a 90% confidence 

level. The calculations assume that the study period consists of merely two years (e.g., 2016 and 2017), and 
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assumes that MI rates are calculated by single age, without pooling or smoothing across ages. Figure 4A 

runs from age 0 to 99, while Figure 4B presents the same data, but focuses on ages 40 to 99. 

The results in Figures 4A and 4B reveal that using a short study period of merely two years and performing 

MI rate calculations separately by single age (without smoothing), leads to statistically unreliable MI 

estimates. Even from ages 75 to 90 (where most deaths occur), the MOEs exceed 1%. If, for example, the 

estimated improvement rate at age 80 is 2%, and the MOE is 1%, then there is a 90% probability that the 

true MI rate falls between 1% and 3%. This is a broad range, indicative of substantial uncertainty.  

Figure 4A 

MARGIN-OF-ERROR AT 90% CONFIDENCE FOR MORTALITY IMPROVEMENT RATE ESTIMATES  

BASED ON TWO CONSECUTIVE YEARS OF NATIONAL-LEVEL DATA 

 
These results assume that two consecutive years of national-level U.S. population data are used to produce two sets of 
mortality rates. The rates are compared to produce MI estimates by single age, without any smoothing. 

Figure 4B 

MARGIN-OF-ERROR AT 90% CONFIDENCE FOR MORTALITY IMPROVEMENT RATE ESTIMATES  

BASED ON TWO CONSECUTIVE YEARS OF NATIONAL-LEVEL DATA 

 
The results in Figure 4B are identical to those in Figure 4A but restricted to a narrower age range. 

To reduce the level of uncertainty, two options are available: pooling or smoothing mortality data by age, 

and/or increasing the length of the study period. Care must be taken not to abuse these techniques by 

extending them beyond a reasonable limit. For example, one could aggressively assume that improvement 

rates are constant across all ages, but such an assumption runs contrary to empirical evidence that shows 

MI differences by age. With respect to the number of years including in an MI study, the longer the period, 

the less relevant will be the MI rate estimates with respect to quantifying recent, short-term trends. 
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The results in Figures 5A and 5B are based on the following MI estimation approach: (1) data from 2014 

and 2019 is used, providing a time interval of five years across which to estimate improvement (only the 

first and last years of this period are used); and (2) mortality rates for each age “x” are calculated by 

pooling data from “x - 2” to “x + 2”. For example, the mortality rate for age 80 is determined by pooling 

data from age 78 through 82. Each age-specific MI rate estimate reflects data from five age cohorts, and 

data from 2014 and 2019.   

Figure 5A 

MARGIN-OF-ERROR AT 90% CONFIDENCE FOR MORTALITY IMPROVEMENT RATE ESTIMATES  

USING DATA FROM A 5-YEAR TIME INTERVAL AND SMOOTHING BY 5-YEAR AGE GROUPS 

 
These results assume that national-level data from 2014 and 2019 is used to produce two sets of mortality rates by single age. 
For each age “x”, the mortality rate is estimated using pooled data from ages “x-2” to “x+2”. The resulting mortality rates for 
2014 and 2019 are then used to compute MI estimates. 

Figure 5B 

MARGIN-OF-ERROR AT 90% CONFIDENCE FOR MORTALITY IMPROVEMENT RATE ESTIMATES  

USING DATA FROM A 5-YEAR TIME INTERVAL AND SMOOTHING BY 5-YEAR AGE GROUPS 

 
The results in Figure 5B are identical to those in Figure 5A but restricted to a narrower age range. 

The MOEs in Figures 5A and 5B are over 90% smaller than the corresponding MOEs in Figures 4A and 4B. 

Recall that MOEs are inversely correlated with the time interval, and inversely correlated with the square 

root of deaths. Figures 5A/5B use a time interval that is five times the length of the interval used for Figures 

4A/4B. This reduces the MOEs to 20% of their prior size. In addition, pooling five adjacent ages together 

increases the number of deaths in each MI calculation by a factor of five, which, considered by itself, 

reduces the MOEs to 45% of their prior size [45% = 1 / sqrt(5)]. The product of 20% and 45% is 9%; thus, 
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the collective effect of using the five-year time interval and pooling five adjacent ages together leads to 

over a 90% reduction in MOEs). 

For ages 70 to 90, the MOEs are around 0.1%. If the MI estimate is 2.0% at age 80, for example, then there 

is a 90% chance that the true MI falls between 1.9% and 2.1%. This is a narrow range indicative of a high 

level of statistical reliability. 

The results in Figures 4A, 4B, 5A, and 5B assume that the death and exposure data that feeds into MI 

calculations is accurate. Data that is estimated—for example, national-level exposure data from the U.S. 

Census—is subject to some uncertainty. This adds an additional layer of uncertainty to MI estimates, but it 

may be difficult to quantify its effects on MI reliability. 

Appendix:  An Overview of the SOA’s Excel Tool for Analyzing MI Reliability 

To produce the results presented in this report, the SOA Research Institute developed an Excel/VBA 

workbook. The workbook is available for download from the SOA’s website. The workbook uses stochastic 

simulation to develop confidence intervals for mortality improvement rate estimates. 100,000 stochastic 

trials is sufficient to produce robust results, but you may select more trials if you wish. 

To run a simulation, a user must first specify (1) the number of years of data to simulate, (2) the number of 

lives (“exposure”) to be simulated in each year, (3) the “true” mortality rate in the first simulation year, and 

(4) the “true” rate of mortality improvement (which is assumed to be constant across the simulation 

period). The simulation will reflect the “true” values, but the randomness of individual mortality risks 

causes simulation results to deviate from the assumptions. The gap between the “true” MI rate and an MI 

rate estimated from simulated mortality data can be viewed as an estimation error. Using many stochastic 

trials, the workbook creates distributions of errors, which, in turn, provide confidence intervals for MI 

estimates. 

Table 5 presents an example of the calculation process for one stochastic trial. In this example, six years of 

data are simulated using an exposure of 100,000 in each year. The initial “true” mortality rate is 1%, and 

the “true” rate of mortality improvement is 2% per year.   

Table 5 

MARGIN-OF-ERROR AT 90% CONFIDENCE FOR MORTALITY IMPROVEMENT RATE ESTIMATES  
1 2 3 4 5 6 7 8 

 

Year True  
Mortality  

Rate 

Expected 
Deaths 

Stdev of 
Deaths 

Random 
Number  
(0 to 1) 

Simulated 
Deaths 

Mort Rate 
Estimate 

Logged  
Mort Rate 
Estimate 

1 1.000% 1000 31.5 0.1009 959.8 0.960% -4.646 
2 0.980% 980 31.2 0.3118 964.7 0.965% -4.641 
3 0.960% 960 30.8 0.1352 926.4 0.926% -4.682 

4 0.941% 941 30.5 0.4539 937.7 0.938% -4.670 
5 0.922% 922 30.2 0.0574 874.7 0.875% -4.739 
6 0.904% 904 29.9 0.2022 879.0 0.879% -4.734 

 

A linear regression is performed using the logged results in column eight. The slope parameter produced by the regression, 
multiplied by negative one, is equal to the estimated MI rate. In this example, the estimated MI rate is 2.063%, which exceeds 
the “true” rate by 0.063%. Thus, for this stochastic trial, the MI estimation error is 0.063%. 
 

Column two shows the expected progression of mortality rates given an initial mortality rate of 1% and an 

assumed rate-of-improvement of 2%. In each successive year, the assumed mortality rate declines by 2% 

relative to the prior year’s rate. The expected deaths in column three are produced by multiplying the 
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mortality rates in column two by the assumed exposure of 100,000. If each individual life is considered an 

independent mortality risk, then actual deaths (as opposed to expected deaths) will follow a binomial 

distribution with a mean equal to column three, and a standard deviation equal to the value shown in 

column four (note that column four is approximately equal to the square root of column three).  

If exposure is large, the binomial distribution converges to the normal distribution; therefore, the 

simulation workbook assumes that the number of deaths follows a normal distribution. For each simulation 

year, the workbook generates a random number between zero and one (shown in column five), and then 

feeds this value into an inverse cumulative normal function with a mean and standard deviation equal to 

the values shown in columns three and four, respectively. This produces a simulated number of deaths, 

shown in column six. Simulated deaths are divided by exposure, producing the mortality rate estimates 

shown in column seven. These values are logged, producing the results in column eight. 

A linear regression is performed using the logged results in column eight. The slope parameter produced by 

the regression, multiplied by negative one, is equal to the estimated MI rate. In the example presented in 

Table 5, the estimated MI rate is 2.063%, which exceeds the “true” rate by 0.063%. Thus, for this stochastic 

trial, the MI estimation error is 0.063%. This calculation process is repeated across many stochastic trials, 

resulting in a distribution of MI estimation errors. The distribution, in turn, can be used to develop MI 

confidence intervals.   

It is worthwhile to explain why the slope of a time series of logged mortality rates is equal to the MI rate 

(multiplied by negative one). If mortality rates are changing across time at a constant geometric rate, then 

their progression from one year to the next is as follows: 

1. qyear+1 = qyear * C, where C = 1 – MI rate 

2. ln(qyear+1 / qyear) = ln(C)          (take the natural log of both sides of the equation) 

3. ln(qyear+1) – ln(qyear) = ln(C) 

4. ln(qyear+1) = ln(qyear) + ln(C) 

5. ln(qyear+T) = ln(qyear) + T * ln(C) 

Equation 5 reveals that if the geometric rate of mortality improvement is constant across time, then the 

logged mortality rates will change at a linear rate across time. Therefore, a linear regression can be applied 

to the time series of logged mortality rates, and the resulting slope term (multiplied by negative one) 

provides an estimate of the MI rate. 
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