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Abstract

The availability of a longevity index that closely tracks the value of longevity-

linked liabilities has the potential to signi�cantly lower the costs and improve the

e�ciency of index-based longevity hedging techniques relative to standard mortality

rate indices currently referenced in �nancial markets. This paper presents a universal

value-based longevity index constructed from US economic and population data.

To construct the index and examine its e�ectiveness in hedging retirement income

portfolios, a multi-population a�ne term structure model for mortality evolution

is adopted, along with a dynamic Nelson-Siegel model for the dynamics of interest

rates. We present numerical experiments demonstrating that the proposed hedging

framework generates a material reduction in basis risk relative to indices based

purely on mortality rates. Beyond longevity risk, the paper notes that interest

rate and in�ation risks can also materially in�uence the value of longevity-linked

liabilities. Finally, the paper bridges the literature gap between continuous-time and

discrete-time multi-population mortality models and notes that the two modelling

frameworks suggest relatively comparable hedging outcomes.
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1 Introduction

Retirement income providers such as de�ned bene�t pension funds and annuity providers
are heavily exposed to longevity risk. Some estimates suggest that each additional year of
life expectancy increases annual pension liability values by 3 to 4 percent (International
Monetary Fund, 2012; Chang and Sherris, 2018). The world's aggregate longevity risk
exposure is growing rapidly. The 2018 Global Pension Assets Study published in Willis
Towers Watson (2018) report that the value of de�ned bene�t pension assets has grown
by 4.5% per year over the last 20 years, and was valued at US$21.3 trillion as of February
2018. The Joint Forum (2013) highlights that each year of life expectancy underestimation
could potentially cost risk holders up to US$1 trillion in additional unexpected bene�t
payments.

The traditional approach to managing longevity risk is through the transfer of lia-
bilities to life insurance or reinsurance companies (Coughlan et al., 2011). This can be
achieved through either a pension buy-in or a pension buy-out, as described in Blake
et al. (2018). However, with consistent growth in retirement income liability volumes
over recent years, the world's aggregate longevity risk exposure is approaching the global
insurance industry's �nite capacity for longevity risk absorption (Barrieu et al., 2012;
Joint Forum, 2013). Furthermore, regulations such as Solvency II have enhanced the de-
mand for longevity reinsurance as a means of reducing solvency capital requirements (Xu
et al., 2019).

In recent years, the development of a longevity risk transfer market has emerged as
a potential solution, with the development of various mortality and longevity-linked in-
dices, instruments and derivative securities. The risk transfer and capital market database
Artemis (2019)1 have documented approximately 87 longevity-linked transactions com-
pleted to date, collectively valued at an aggregate amount of over ¿172 billion with trans-
action sizes growing over time since the �rst ever transaction took place in January 2008
between J.P. Morgan and UK insurer Lucida. Most transactions to date have been cus-
tomised or �bespoke� indemnity swaps: customised over-the-counter hedges that transfer
a retirement income provider's speci�c longevity risk exposure to a counterparty. There
is no longevity basis risk associated with the hedge for the retirement income provider
as the counterparty e�ectively assumes all obligations arising from the exposure. From
an economic perspective, an indemnity hedge is identical to the traditional approach of
transferring the annuity book to a life insurer or reinsurer, however in the format of a cap-
ital market instrument (Coughlan, 2009). The major drawback is the need for investors
to analyse fund-speci�c details on the portfolio being hedged. This makes it complex
and costly for capital markets to evaluate potential transactions, thereby discouraging
investors and inhibiting the development of market liquidity (Coughlan, 2009).

A standardised index-based hedge, however, is based on the mortality experience over
time of some underlying �reference� population as represented by a published longevity
index. For example, in 2007 J.P. Morgan launched the Lifemetrics Index2 which provides
male and female period life expectancies, crude central mortality rates and graduated
initial mortality rates for the US, England and Wales, the Netherlands and Germany
(Coughlan et al., 2007). From 2010, management of the Lifemetrics Index is now under
the Life and Longevity Market's Association (Life and Longevity Markets Association,
2018). Another well known longevity index is the Xpect-Club Vita Index3 launched by
Deutsche Börse in March 2008 (Deutsche Börse, 2018). It is critical that any longevity

1www.artemis.bm/library/longevity_swaps_risk_transfers.html
2https://llma.org/index/index-description/
3http://www.xpect-index.com
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index intended for index-hedging purposes is transparent, objective and can serve as
an unbiased point of reference for all participants in the longevity risk transfer market
(Loeys et al., 2007; Sweeting, 2010). In contrast to indemnity hedges, index hedges do not
require the analysis of portfolio-speci�c details; cash�ows only depend on population-level
mortality experience as represented by the published longevity index which makes it much
simpler for investors to understand and manage the associated risks. Therefore, these
instruments have a much greater potential to develop su�cient market liquidity over time
and become viable longevity risk transfer vehicles (Villegas et al., 2017). However, these
instruments cannot hedge the speci�c mortality experience of a given retirement income
portfolio or �book�. That is, they are subject to longevity basis risk � an issue which
remains a major barrier to index-based hedging solutions (Coughlan et al., 2007). Our
research is primarily motivated by this critical need to minimise the basis risk associated
with such hedging techniques.

The Longevity Basis Risk Working Group (LBRWG) notes that in addition to the
prevalence of longevity basis risk, the lack of a robust framework for quantifying longevity
basis risk has further impeded the appetite for standardised index-based longevity hedg-
ing solutions. To date, the LBRWG has published Phase 1 (Haberman et al., 2014) and
Phase 2 (Li et al., 2017) technical reports as well as work in Villegas et al. (2017) and
Li et al. (2019). These publications propose techniques to quantify each of three con-
stituent of longevity basis risk described in Mosher and Sagoo (2011). Structuring basis
risk, resulting from di�erences in the timing or maturity of cash�ows between the hedging
instrument to that of the annuity liability, is incorporated using numerical optimisation
procedures. Random sampling techniques are implemented to account for sampling basis
risk which arises from the random variation around expected mortality outcomes in �nite
book sizes. Demographic basis risk resulting from socio-economic or demographic di�er-
ences between the composition of the reference and book populations is modelling through
multi-population mortality modelling frameworks. To date, to the best of our knowledge
no work, other than the LBRWG reports, accounts for all three sources of longevity basis
risk in an analysis of index-based longevity hedging solutions � a key omission that this
research seeks to address.

Multi-population mortality models are �tted to the mortality data of multiple di�erent
populations, modelling their relationship over time and projecting the joint mortality out-
comes of the di�erent populations into the future, thereby capturing mortality dependence
structures. Most multi-population mortality models described in the literature are con-
structed in discrete-time, with a comprehensive overview of the �universe� of such models
detailed in Villegas et al. (2017). However, the literature on applications of continuous-
time multi-population mortality modelling is much less developed; the only such model
proposed to date is the joint a�ne term structure model developed in Xu et al. (2019);
a two-population three-factor model which introduces mortality dependence by allowing
one of the three factors to in�uence mortality dynamics across both populations. Rel-
ative to discrete-time models, the continuous-time class of mortality models o�er vastly
superior versatility in applications involving �nancial modelling (Jevti¢ et al., 2013). Fur-
thermore, no research has yet directly compared hedging outcomes under the two types
of multi-population mortality modelling frameworks, providing scope for this research to
o�er a novel contribution to the existing literature.

Retirement income providers are not only exposed to longevity risk, but also interest
rate and in�ation risks (Towers Watson, 2013). However, to date, index-based longevity
hedging transactions have referenced longevity indices linked to national life tables such
as the Lifemetrics Index which fails to incorporate these other critical sources of risk
(Cairns, 2017). This has been a key motivation for Sherris (2009) who highlights the need
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for value-based longevity indices which aim to track the expected present value of a unit
of longevity-indexed income. Unlike life tables-based survival rate indices, value-based
longevity indices have the capacity to integrate all of the major risk factors associated
with the provision of retirement income products (Wills and Sherris, 2010). Therefore,
such indices should intuitively be associated with lower levels of basis risk when used
to underlie standardised longevity hedging transactions, particularly if they are designed
in such a way as to re�ect the major sources of risk associated with retirement income
portfolios which is a central hypothesis of this paper.

Xu et al. (2019) construct value-based longevity indices based on uncertain interest
rates and mortality dynamics of Australia, the UK, the Netherlands and France. Despite
not explicitly modelling sampling nor structuring basis risk, their analysis demonstrates
that interest rate risk is a material element in the hedging framework, implying that value-
based longevity indices have the capacity to improve hedging outcomes through their
potential to incorporate interest rate uncertainty in addition to longevity risk. Similarly,
Chang and Sherris (2018) �nd that the basis risk associated with an index swap referencing
a value-based longevity index is signi�cantly lower than that of an S-forward based on
population survival rates in stochastic interest rate settings. While the analysis in Chang
and Sherris (2018) does not incorporate demographic basis risk nor in�ation-indexation
of retirement bene�ts, it demonstrates the potential for value-based longevity indices to
signi�cantly improve standardised longevity hedging outcomes. This paper seeks to extend
on these analyses by explicitly addressing all three constituent components of longevity
basis risk in the evaluation of index-based hedging of retirement income portfolios.

In 2013, the global asset manager BlackRock launched the Cost of Retirement Index
(CoRI)4 for twenty US cohorts; a set of value-based longevity indices which track the cost
of an in�ation-indexed retirement income stream while incorporating the market price of
longevity risk as re�ected in the prevailing prices of retirement income products. However,
as Sweeting (2010) notes, longevity indices that are used for index hedging applications
must be calculated in an objective and transparent manner. Since retirement income
providers are able to directly in�uence the CoRI through their pricing policies, the index
would not be perceived as an independent, objective representation of longevity outcomes
if used to underlie standardised capital market instruments.

The contribution of this paper is threefold. Firstly, while various value-based longevity
indices have been proposed and constructed in the literature, to date none have incorpo-
rated all three of the major risk factors associated with retirement income portfolios; that
is, longevity risk, interest rate risk and in�ation risk (Towers Watson, 2013). We expect
to �ll this literature gap and thereby provide a template for the development of an index
that closely tracks the value of longevity-linked liabilities, ful�lling a key need of practi-
tioners in the longevity risk transfer market. Furthermore, by constructing such an index,
the attribution of risk among these three elements can be estimated; to date no such
decomposition has appeared in the literature. Additionally, while various authors have
assessed the basis risk associated with value-based longevity indices, none have engaged
the holistic, decomposed quanti�cation framework developed by the LBRWG. For exam-
ple, Xu et al. (2019) account for demographic basis risk in their analysis, while Chang
and Sherris (2018) incorporate sampling basis risk. By assessing all three constituent
components of longevity basis risk, our research can �ll an important literature gap and
contribute towards the robust evaluation of index-based longevity hedging in industry.
Indeed, we present compelling evidence of reduced basis risk for the value-based longevity
index relative to standard survival rate indices. Finally, while both discrete-time and
continuous-time multi-population mortality modelling techniques have been developed,

4https://www.blackrock.com/cori/fact-sheets
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no work has compared the hedging outcomes associated with the two di�erent classes of
models. We �nd that despite their signi�cant methodological di�erences, the two mod-
elling frameworks ultimately suggest relatively comparable hedging outcomes � a con-
tribution which additionally facilitates the assessment of model risk on hedge outcomes
another key consideration for practitioners.

The rest of this paper is organised as follows; Section 2 introduces the proposed value-
based longevity index. The mortality and interest rate data used to conduct the empirical
analysis is outlined in Subsection 2.1. Subsection 2.2 details both the continuous-time and
discrete-time mortality models utilised in this paper, while the interest rate modelling
framework is described in Subsection 2.3. The liability pro�le of the retirement income
portfolio is presented in Section 3. Numerical illustrations for the value-based longevity
index are presented in Section 4, while Section 5 introduces an index swap instrument and
designs a hedging strategy to calibrate the optimal notional swap weighting. Section 6
presents several basis risk measures to compare the hedge e�ectiveness of the value-based
longevity index relative to a variety of indices with various speci�cations to highlight the
additional risk reduction generated by the proposed index. A range of sensitivity analyses
to determine the signi�cance of various modelling assumptions and experimental design
settings are presented in Section 7, and Section 8 concludes the paper.

2 Value-Based Longevity Index

This paper considers the construction of a value-based index, Ix,t, which quanti�es the
expected present value of a unit of longevity and in�ation indexed income paid annually
in arrears to a cohort aged, x, at initial time, t. As it accounts for all three of the
major risk factors associated with retirement income portfolios, the index is able to more
e�ciently track the value of longevity-linked liabilities; the ability to simultaneously hedge
longevity risk, interest rate risk and in�ation risk with a single product ful�ls a key need
of practitioners in the longevity risk transfer market. The value of the index is represented
as

Ix,t =
ω−x∑
i=1

SR(x, t, t+ i)× PR(t, t+ i),

where ω is the maximum attainable age. The quantity SR(x, t, t + i) denotes the i year
survival probability of the population underlying the index, and is forecast using the
mortality modelling frameworks described in Subsection 2.2. The quantity PR(t, t + i)
denotes the time t price of an in�ation-indexed zero coupon bond making a single unit
payment at time t+i, and is forecast using the interest rate modelling techniques presented
in Subsection 2.3. The empirical data used to calibrate the mortality and interest rate
models are described in Subsection 2.1, while the functional forms of the forecast survival
probabilities and bond prices, SR(x, t, t+ i) and PR(t, t+ i), are presented in Subsections
2.2 and 2.3 respectively.

The population whose mortality underlies the value-based longevity index is termed
as the �reference� population and is distinguished from the �book� population which refers
to the retirement income portfolio to be hedged against the index. In order to capture
their dependence in longevity experience, the mortality dynamics of the two populations
are jointly modelled in Subsection 2.2.

In contrast to BlackRock's CoRI5, which is in�uenced by the prevailing pricing of
retirement income products by providers, the value-based longevity index does not in-

5https://www.blackrock.com/cori/fact-sheets
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corporate any longevity risk premium, re�ecting only the forecast survival rates, interest
rates and in�ation. This ensures that market participants view the index as an indepen-
dent, objective representation of longevity outcomes, which is a critical requirement for a
viable index-based longevity risk transfer market (Sweeting, 2010). Financial markets are
left to determine an appropriate price for longevity risk through the setting of forward
prices for traded index-linked instruments. Furthermore, in accordance with Chang and
Sherris (2018), the index does not account for any expense loading or pro�t margin.

2.1 Mortality and Interest Rate Data

We de�ne the reference population to be the US national male population and the book
population as a pool of lifetime income stream income recipients whose mortality re�ects
that of an a�uent subset of the US male population. As with Xu et al. (2019) and Luciano
et al. (2017), male mortality is chosen in order to establish upper bounds on the market
price of longevity risk.

For the reference population mortality evolution, we use single-year single-age population-
level deaths and exposure data for US males from ages 65 to 99 between 1980 and 2015
sourced from the Human Mortality Database (2018)6. A starting year of 1980 is selected
to re�ect the period analysed in Li et al. (2017) who highlight the structural di�erences
in mortality in prior periods noted by various authors (Renshaw and Haberman, 2003; Li
and Hardy, 2011).

However, time series deaths and exposure data for US annuity holders is not publicly
available. Therefore, we construct a synthetic book population which is assumed to
approximate the demographics of a typical retirement income portfolio. The United States
Mortality Database (2018)7 publishes state-level mortality data over the period 1959 to
2015. We aggregate the exposure and deaths data using the set of states in the highest
US income quintile based on state-level average household income statistics published by
the Small Area Income and Poverty Estimates Program Small Area Income and Poverty
Estimates Program (2018)8 in order to construct a synthetic book population mortality
dataset of single-year single-age deaths and exposure data from ages 65 to 99 between
1980 and 2015. This methodology is underpinned by the assumption that retirement
income portfolios typically consist of more a�uent subsets of the population (Coughlan
et al., 2011).

The observed age 65 and 75 initial mortality rates for the reference and book popu-
lations over the in-sample period is shown in Figure 1. Both populations clearly exhibit
mortality improvement over time, with the book population generally having lower mor-
tality rates relative to the reference population.

Our analysis also makes use of nominal and real bond yield data published by the US
Department of the Treasury9 to �t interest rate models.

For the nominal yield data, we use monthly observations from October 2006 to May
2018 as this provides complete data across all eleven published maturity terms: 1 month,
3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 years and 30
years.

For the real yield data, we use monthly observations from February 2010 to May 2018
as this provides complete data across all �ve published maturity terms: 5 years, 7 years,
10 years, 20 years and 30 years.

6www.mortality.org/
7https://usa.mortality.org/
8https://www.census.gov/en.html
9https://home.treasury.gov/
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Figure 1: Observed initial mortality rates from 1980 to 2015 in the reference and book
populations for US males showing mortality improvement across both populations and
lower mortality in the book population

(a) Age 65 (b) Age 75

2.2 Mortality Modelling Framework

Despite the well-developed literature on discrete-time multi-population mortality mod-
elling, continuous-time models have not been explored much regardless of their enormous
�exibility in applications when integrated with other �nancial modelling elements (Jevti¢
et al., 2013). For the mortality modelling framework, we adopt the multi-factor joint a�ne
term structure model (ATSM) as developed in Xu et al. (2019). This model is inspired by
multi-country a�ne term structure interest rate models which have proved to be �exible,
tractable and exhibit exceptional empirical �t. Furthermore, the a�ne term structure
framework provides explicit closed-form solutions for survival probabilities as a function
of the underlying factors, which signi�cantly simpli�es our computational process.

In explaining the mortality dynamics of the two populations, three latent time-varying
factors are incorporated into the modelling framework; a local factor Rx,t which only
impacts the mortality of the reference population R, another local factor Bx,t which only
impacts the mortality of the book population B and a common factor Cx,t which a�ects the
mortality dynamics of both the reference and book populations. These three factors are
depicted in red, blue and red-blue combined circles in Figure 2 respectively, with arrows
denoting their respective impacts on each of the two populations modelled. The reference
and book populations are depicted as red (�R�) and blue (�B�) rectangles respectively.

From this diagram, it is apparent that the common factor captures all the dependence
in mortality experience across the two populations arising from their mutual exposure to
certain common in�uences (for example, a strong winter). Conversely, the two local factors
facilitate discrepancies in mortality dynamics over time between the two populations owing
to di�erences in their demographic composition; namely the issue of demographic basis
risk described in Mosher and Sagoo (2011). The technical speci�cation and calibration of
the model is detailed in Appendix A.

The model �ts the average force of mortality to a function of the latent time-varying
factors. The average force of mortality is de�ned as

µ̄x,t(T ) = − 1

T − t
log[S(x, t, T )],

where S(x, t, T ) is the survival probability for an individual aged x in year t over the next
T − t years. In particular, the average force of mortality curve for each population is
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Figure 2: Structure of the joint a�ne term structure model for mortality

modelled as

µ̄ix,t(T ),=
1− e−φ1(T−t)

φ1(T − t)
Cx,t +

1− e−φj(T−t)

φj(T − t)
ix,t −

Ait(t, T )

T − t
, for i =

{
R, (j = 2)

B, (j = 3)

}
,

where φ1, φ2 and φ3 are constant parameters, while ARt (t, T ) and ABt (t, T ) are functions
of model speci�c parameters as well as the length of the exposure period T − t.

The model can be estimated using the Kalman �lter (Kalman, 1960) which employs
maximum likelihood estimation techniques to calibrate model parameters by simultane-
ously �tting the observed average force of mortality to the model average force of mortality
for each population. Having estimated the model, we then forecast and simulate the fu-
ture average force of mortality and the associated survival probabilities starting from age
x over N years, where N is the initial horizon of the annuity liability. The forecasting of
survival probabilities is achieved as follows:

1. Forecast the common, reference and book factors CF
x,t, R

F
x,t, B

F
x,t for years t =

1, 2, ..., N from the estimated joint ATSM starting from age x.

2. Substitute the forecast factors into the average force of mortality functions to fore-
cast the average force of mortality starting from age x

µ̄i,Fx,t (T ) =
1− e−φ1(T−t)

φ1(T − t)
CF
x,t +

1− e−φj(T−t)

φj(T − t)
iFx,t −

Ait(t, T )

T − t
for i =

{
R, (j = 2)

B, (j = 3)

}
.

3. Compute the associated survival probability forecasts:

SR,F (x, t, T ) = e(−µ̄R,Fx,t (T )×(T−t)),

SB,F (x, t, T ) = e(−µ̄B,Fx,t (T )×(T−t)).

The simulation of survival probabilities follows a similar procedure, using the simulated
factors in place of the forecast factors. We simulate a large number of factor paths and
the corresponding survival probabilities matching the liability horizon.

8



In addition to the continuous-time a�ne framework, we also �t a discrete-time multi-
population mortality model for validation purposes. Drawing on the methodology devel-
oped by the LBRWG (Haberman et al., 2014; Villegas et al., 2017; Li et al., 2017, 2019),
the M7-M5 model is adopted. This model allows for inter-age mortality correlations and
is appropriate for basis risk assessments for annuity portfolios that have at least 25,000
lives, 8 years of reliable data, a stable demographic mix and do not have book speci�c
cohort e�ects.

For the reference population component of the M7-M5 model, the single-population
M7 model (Cairns et al., 2009) is adopted, that is

logit(qRx,t) = κRt,1 + (x− x̄)κRt,2 + ((x− x̄)2 − σ2
x)κ

R
t,3 + γRt−x,

where qRx,t is the year t age x mortality rate in the reference population; κRt,1, κ
R
t,2 and

κRt,3 are latent-time varying factors corresponding to the mortality curve's level, slope and
curvature respectively and γRt−x is the cohort e�ect for those born in year t − x. x̄ and
σ2
x denote the sample age mean and sample age variance respectively. To generate future

mortality rate forecasts and simulations in the reference population, the factors κRt,1, κ
R
t,2

and κRt,3 are modelled as a multivariate random walk with drift. The di�erence between
the book and reference population mortality rates is modelled as

logit(qBx,t)− logit(qRx,t) = κBt,1 + (x− x̄)κBt,2,

where qBx,t is year t age xmortality rate in the book population, κ
B
t,1 and κ

B
t,2 are latent-time

varying factors explaining the di�erence in logit mortality rates and x̄ is the sample age
mean. To generate future mortality rate projections for the book population, the factors
κBt,1 and κBt,2 are modelled as a �rst order vector auto-regression process, VAR(1). The
forecasting and simulation methods are described in greater detail in Appendix B.

2.3 Interest Rate Modelling Framework

Apart from uncertainty in future mortality rates, the value of longevity-linked liabilities
is also signi�cantly impacted by �nancial risk; hedging analyses that fail to incorporate
uncertainty associated with interest rates cannot support the credible evaluation of index-
based swaps for the purposes of hedging retirement income portfolio risk exposures. We
adopt the dynamic Nelson-Siegel (DNS) interest rate model with independent factors, as
developed in Diebold and Li (2006), to model �nancial risk. Belonging to the a�ne term
structure class of interest rate models, the DNS model is mathematically tractable and
has closed-form zero-coupon bond prices.

The development of the DNS model originates from the yield curve function pioneered
in Nelson and Siegel (1987). However, it models bond yields as a function of latent time-
varying factors, thus allowing yields of any maturity to be forecast or simulated over any
given horizon. Diebold and Li (2006) also show that this model provides good empirical �t.
We �t the DNS model to both nominal (N) and real (R) interest rate data, adopting the
conventional assumption of independence between mortality dynamics and interest rates
(Bi�s, 2005). The nominal interest rate model is required for the discounting of index
swap payments, while the real interest rate model facilitates the valuation of in�ation-
linked liabilities. No dependence between the two interest rate processes is modelled. This
assumption is underpinned by the Fisher e�ect which posits that real interest rates are
independent of monetary measures such as nominal interest rates; a hypothesis which has
been supported by numerous recent empirical studies (Panopoulou and Pantelidis, 2016;
Uribe, 2018; Cai, 2018).
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The technical speci�cation and calibration of the model is detailed in Appendix C.
Beginning with the nominal interest rate model, we �rst de�ne the three latent time-
varying factors:

• Lt: the level factor for the yield curve,

• St: the slope factor for the yield curve, and

• Ct: the curvature factor for the yield curve.

The zero coupon bond yield at time t with τ months maturity is given by the model yield
function

yt(τ) = Lt + St(
1− e−λτ

λτ
) + Ct(

1− e−λτ

λτ
− e−λτ ),

where λ is the Nelson-Siegel parameter. As with the joint ATSM, the DNS interest rate
model can be estimated using the Kalman �lter (Kalman, 1960) by �tting observed bond
yields to the model bond yields. Having estimated the model, we then forecast and
simulate the future term structure of interest rates and the associated zero coupon bond
prices over N years. The forecasting of zero coupon bond prices is achieved as follows:

1. Forecast the level, slope and curvature factors LFt , S
F
t , C

F
t for years t = 1, 2, ..., N

from the estimated DNS interest rate model.

2. Substitute the forecast factors into the yield function to forecast the term structure
of interest rates

yFt (τ) = LFt + SFt (
1− e−λτ

λτ
) + CF

t (
1− e−λτ

λτ
− e−λτ ).

3. Compute the associated zero coupon bond price forecasts:

P F (t, T ) = e(−yFt (T−t)×(T−t)).

The simulation of zero coupon bond prices follows a similar procedure, using the sim-
ulated factors in place of the forecast factors. We simulate a large sample of factor paths
and corresponding bond prices over the liability horizon as in the mortality forecasting
case.

3 Liability Pro�le

For our hedging analysis, we assume that a retirement income provider is aiming to hedge
the risks associated with a closed annuity pool comprising of individuals from a single
cohort initially aged x in year t who are promised $1 of in�ation-indexed income per year
upon survival from ages x+1 to the maximum attainable age, ω, hence the initial horizon
of the annuity liability is given by ω − x. The present value of the retirement income
portfolio liability is

PV (Unhedged Portfolio) =
ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i),

where lBx+i,t+i is the number of surviving annuitants (aged x + i at time t + i) and this
is dependent on the simulated book population mortality dynamics generated by the

10



chosen mortality model. However, we also account for sampling basis risk by allowing the
number of deaths in any given year to follow a binomial distribution DB

x,t ∼ Bin(EB
x,t, q

B
x,t)

(Haberman et al., 2014) where the exposure EB
x,t is given by the number of surviving

annuitants in year t and the mortality rate parameter qBx,t is simulated from the mortality
model. The quantity, PR(t, t + i), is the time t price of an in�ation-indexed zero coupon
bond making a single unit payment at time t+ i as computed from the real interest rate
model.

In Figure 3, we plot a histogram showing 10,000 simulations of the liability present
value for a portfolio with an initial size of 100,000 lives based on a starting age of x = 65
and an assumed �nal payment age of ω = 100, giving an initial liability term of ω−x = 35
years. A degree of positive skewness is apparent, with the simulated distribution exhibiting
a heavier right tail. This highlights the importance of e�ectively hedging against more
extreme outcomes in pension liabilities resulting from unexpected mortality or �nancial
market experience.

Figure 3: Liability present value histogram for the book population cohort initially aged
65 (joint ATSM, 10,000 simulations, 100,000 lives)

4 Value-Based Longevity Index Computation

As referenced in Section 2, we de�ne the value-based longevity index, Ix,t, as the expected
present value of a unit of longevity and in�ation-indexed income paid annually in arrears
to a cohort aged x at initial time t. Drawing on the survival probabilities of the reference
population, as generated by the continuous-time mortality model, as well as forecast real
zero coupon bond prices, we compute the initial (that is, time t = 0) index values for ages
65 to 99, as depicted in Figure 4. The index value for age 65 is 12.98, that is, for each 65
year old male who is promised $1 of in�ation-indexed income per year upon survival from
ages 66 to 100, a retirement income provider requires $12.98 worth of investments today.

It is also possible to forecast and simulate future index values over time based on
mortality and interest rate forecasts and simulations. For example, the forward index
values for the cohort initially aged x = 65 (at time t = 0) is represented by the black
curve in Figure 5. This shows the expected path of the value-based longevity index over
the payment period for this particular reference population cohort, where a smooth and
stable decline is observed.
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Figure 4: Initial index value by age (joint ATSM)

In reality, mortality, interest rate and in�ation factors will di�er over time from initial
forecasts and hence the evolution of the index will not exactly track its expected pathway.
Figure 5 also shows 10,000 simulations of the index value for the cohort initially aged
x = 65. We note that although the forward index values remain broadly in the middle
of the distribution of simulated paths, there is material variability around the expected
value over time. The volatility around the forward values declines over time until the �nal
age is reached.

Figure 5: Forward and simulated index values for the reference population cohort initially
aged 65 (joint ATSM, 10,000 simulations)

5 The Hedging Framework

Assume that an annually-settled index swap trades in the longevity risk transfer mar-
ket. For a given age x at initial time t, the swap references the constructed value-based
longevity index Ix,t; at time t+ i, the �xed leg pays the i year forward index value Ifx+i,t+i

while the �oating leg pays the realised index value Ix+i,t+i. As index values are based on
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forward-looking cash�ows, the �nal swap payment is made when the initial cohort reaches
age ω − 1; not at age ω when the �nal annuity payments are made to surviving policy-
holders. That is, the swap has an initial maturity term of ω− x− 1, hence the longevity,
interest rate and in�ation risk over the �nal year of the liability remain unhedged. This
mismatch between liability and hedge cash�ows constitutes an example of structuring
basis risk.

A retirement income provider seeking to hedge their risk exposure would be the �xed
leg payer to this index swap. From their perspective, the random present value of the
swap instrument is

PV (Index Swap) =
ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i)× PN(t, t+ i),

where x = 65 and ω = 100, Ifx+i,t+i denotes the forward index value which is computed
from central forecasts, and Ix+i,t+i denotes the realised index value whose computation
entails two distinct steps. The initial phase involves the simulation of a single mortality
intensity and interest rate path up until time t+ i. In the second stage, conditional on the
mortality and interest rate realisations in the �rst phase, central forecasts from time t+ i
onwards are computed to derive the realised index value Ix+i,t+i. The quantity, PN(t, t+i),
is the time t price of a nominal zero coupon bond making a single unit payment at time
t+ i, and this is simulated from the nominal interest rate model.

For an index swap written on the index for the cohort initially aged x = 65, the
simulated swap payment paths received by the �xed leg payer over the ω − x − 1 = 34-
year swap term is shown in Figure 6. These swap simply represent the di�erence between
the simulated and forward index values over time shown in Figure 5.

Figure 6: Simulated swap payments for the reference population cohort initially aged 65
(joint ATSM, 10,000 simulations)

Although individual swap payment paths can be volatile, the average swap payment as
depicted by the black line remains very close to zero. This re�ects the fact that forward
index values are simply assumed to follow the expected values with no risk or pro�t
premiums priced in to the forward values. As re�ected in Figure 5, the variability of
swap payments is highest in the early years of the hedge and steadily decreases over the
term of the swap. This is because the earlier that unexpected deviations in experience
occur, the greater the number of remaining future cash�ows to be impacted, and hence the
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expected present value of future cash�ows is more sensitive in the early years to emerging
unexpected deviations in mortality, in�ation and interest rate experience.

When retirement income providers hedge their exposure using the swap instrument,
they e�ectively combine the hedging instrument with their exposed portfolio. Therefore,
the random present value of the retirement income providers' hedged portfolio is given by
the sum of the the present values of the two components

PV (Hedged Portfolio) = PV (Unhedged Portfolio) + PV (Index Swap)

=
ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i) + w0

ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i)× PN(t, t+ i),

where w0 refers to the notional amount of the longevity swap. As with Li et al. (2017), w0

is estimated using numerical optimisation with an objective to minimise the variance of
the hedged portfolio's present value (Appendix D) conditional on the simulated liability
values and realised swap payment paths, obtaining a solution of w0 = 0.3056.

6 Basis Risk Metrics

Inspired by Chang and Sherris (2018), we compare the hedge outcomes associated with
the value-based longevity index to two other longevity indices which we also construct.
The purpose of these comparisons is to attribute the risks associated with retirement
income portfolios into longevity risk, interest rate risk and in�ation risk components.

We de�ne the index I0
x,t as the expected survival probability of a cohort aged x in year

t. The survival index value is represented as

I0
x,t =

ω−x∑
i=1

SR(x, t, t+ i),

where SR(x, t, t+ i) denotes the forecast i year survival probability of the reference pop-
ulation.

We de�ne the index I1
x,t as the expected present value of a unit of longevity-indexed

income paid annually in arrears to a cohort aged x in year t. The index value is represented
as

I1
x,t =

ω−x∑
i=1

SR(x, t, t+ i)× PN(t, t+ i),

where SR(x, t, t+ i) denotes the forecast i year survival probability of the reference popu-
lation and PN(t, t+ i) is the forecast time t price of a nominal zero coupon bond making
a single unit payment at time t+ i as computed from the nominal interest rate model.

The attribution of risk can be outlined as follows:

• The risk reduction achieved by hedging the retirement income portfolio using I0
x,t

as the reference index represents the impact of longevity risk.

• The additional risk reduction achieved by hedging the retirement income portfolio
using I1

x,t as the reference index (relative to a hedge referencing the index I0
x,t)

represents the impact of interest rate risk.

• The additional risk reduction achieved by hedging the retirement income portfolio
using Ix,t as the reference index (relative to a hedge referencing the index I1

x,t)
represents the impact of in�ation risk.
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Having calibrated the longevity swap instrument, it is critical to assess the e�ectiveness
of the hedging strategy. We initially adopt graphical risk reduction representations as
visualisation can be a very e�cient way to communicate the e�ectiveness of hedging
strategies to a variety of di�erent stakeholders. Following Coughlan (2009), we plot the
simulated liability distributions to obtain a preliminary overview of the degree of risk
reduction achieved by the index-based hedge, as well as the other comparison indices
described above.

In Figure 7, the blue histograms represent the present value of the unhedged portfolio
liability outcomes, while the overlaid orange histograms represent the net present value
of the hedged liability outcomes (that is, the sum of the unhedged liability outcomes
and the weighted index swap outcomes). These diagrams represent annuity pools with
100,000 initial members. For all three indices, we observe a reduction in the volatility
of liability valuations once the index swaps have been taken into account. However, it
is also apparent that when the liability is hedged with reference to the in�ation-indexed
value-based longevity index Ix,t (Figure 7(c)), the hedged distribution becomes materially
narrower relative to the two alternate longevity indices.

Figure 7: Hedged and unhedged liability present value distributions by hedging index
(joint ATSM, 10,000 simulations, 100,000 lives)

(a) Survival index I0
x,t (b) Nominal-linked value index I1

x,t

(c) In�ation-linked value index Ix,t

(d) Box and whisker plots of the liabil-

ity present value distribution by hedg-

ing index

We also present a box and whisker plot of the simulated liability present value outcomes
in Figure 7(d). In all four simulated distributions, the median outcome as indicated
by the central mark is relatively similar. However, once we examine the 25th and 75th

percentiles of the liability distribution (represented by the lower and upper edges of the box
respectively), we note that variability is materially reduced when comparing the in�ation-
linked hedge against the unhedged liability as well as the two other alternate hedging
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indices. Furthermore, the outliers associated with the simulated net liability outcomes
(indicated by the red crosses) are much less extreme in the case of the in�ation-linked
value-based longevity index, con�rming the observations inferred from the histograms in
Figure 7.

However, although graphical representations can provide an adequate understand-
ing of hedging e�ciency, in order to systematically evaluate the hedge e�ectiveness of
the in�ation-indexed value-based longevity index relative to the other longevity indices,
quantitative risk measures must also be examined. Therefore, we investigate the summary
statistics of the simulated liability present value distributions, as presented in Table 1.
From these �gures, it is evident that the minimum and maximum outcomes are much less
extreme and the variance of the liability present value distribution is materially reduced
by hedging. Indeed, given the approximate normality of the distributions observed in Fig-
ure 7, we conduct an F-test for equality of two variances to formally examine whether the
variance of the liability present value is reduced when hedged against the in�ation-linked
value index relative to the two other indices. Against a one-sided alternative, we are able
to reject the null hypothesis at all reasonable signi�cance levels (p-value < 0.0001) and
conclude that the variance of the hedged liability tied to the in�ation-linked value index
is lower than the other indices at a statistically-signi�cant level.

Table 1: Summary statistics: hedged and unhedged liability present value outcomes by
hedging index (joint ATSM, 10,000 simulations, 100,000 lives)

Hedging Index Minimum Maximum Mean Variance
Unhedged 9.47 19.97 13.92 2.00
Survival index I0

x,t 10.66 17.84 13.87 0.83

Nominal-linked value index I1
x,t 10.87 16.13 13.87 0.52

In�ation-linked value index Ix,t 11.88 15.85 13.86 0.31

The Longevity Risk Reduction (LRR) metric is also well established in the literature
as a robust indicator of hedging performance for longevity-linked instruments (Coughlan
et al., 2011; Li et al., 2017). Note that some authors refer to the LRR metric using
alternate terms such as �hedge e�ciency� (Chang and Sherris, 2018). Following Cairns
et al. (2014), we de�ne our LRR measure based on the percentage reduction in variance
of the liability present value:

Longevity Risk Reduction = (1− var(Hedged Portfolio)

var(Unhedged Portfolio)
)× 100%,

where var(Unhedged Portfolio) and var(Hedged Portfolio) refer to the variance of the
retirement income provider's net position before and after the hedge has been applied,
respectively.

In Table 2, we show the LRR attained by the various indices across three di�erent
book sizes. It is apparent that all indices are ine�ective at book sizes of 1,000 policyhold-
ers due to sampling basis risk. Once the portfolio size increases to 10,000 and eventually
100,000 policyholders, all three indices exhibit a much improved hedging performance.
However, the LRR associated with the in�ation-linked value-based longevity index re-
mains materially superior to the other indices at all book sizes, with the magnitude of the
out-performance found to be higher in larger portfolios. However, it should be noted that
even in a particularly large portfolio of 100,000 annuitants, the in�ation-indexed value-
based longevity index does not provide a perfect hedge (LRR of 84.58%). Demographic
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basis risk remains a factor, while the structuring basis risk associated with the �nal year
of the liability remaining unhedged also impacts the outcome.

Table 2: Longevity risk reduction: percentage reduction in variance showing the greater
e�ectiveness of the in�ation-linked value-based longevity index relative to alternate indices
(joint ATSM, 10,000 simulations)

Hedging Index
Book Size

1,000 10,000 100,000

Survival index I0
x,t 31.52 54.07 58.71

Nominal-linked value index I1
x,t 37.82 67.24 74.07

In�ation-linked value index Ix,t 42.67 77.43 84.58

The di�erences between the hedging outcomes associated with the three indices also
provide an indication as to the relative impact of the three identi�ed risk sources. For
example, the additional risk reduction attained using the in�ation-linked value index as
opposed to the value index linked to nominal interest rates is over 10% in a book of
100,000 policyholders. Therefore, when hedging annuity exposures where payments are
tied to price levels, an index that re�ects the in�ation-linked nature of these obligations
provides a material advantage over indices that fail to account for in�ation. Similarly,
we observe a di�erence of almost 26% between the in�ation-linked value index and the
standard survival rate index, suggesting that retirement income providers who pursue
survivor swaps when hedging in�ation-linked liabilities would experience signi�cant basis
risk due to the inability of survival indices to account for in�ation or interest rate risk.

7 Sensitivity Analysis

From a practitioner's perspective, it is critical to assess the signi�cance of various mod-
elling assumptions and experimental design settings. Following the template of Li et al.
(2017), robustness checks are performed on various aspects of the modelling framework
and methodological process to examine the potential impact of di�erent assumption set-
tings on hedge outcomes. In each of the following cases, one key experimental variable is
changed, while all other factors and settings are held constant.

It is well established in the literature that the e�ectiveness of index-based longevity
hedges are greater for larger book sizes (Villegas et al., 2017; Li et al., 2017; Chang and
Sherris, 2018); a �nding which is also evidenced in our analysis. It occurs because in
larger retirement income portfolios, sampling basis risk lacks the su�cient leverage to
materially impact aggregate hedge outcomes. To more closely examine the relationship
between portfolio size and longevity risk reduction, we test our hedging framework utilising
the in�ation-linked value-based longevity index in portfolio sizes of 1,000; 5,000; 10,000;
25,000; 50,000 and 100,000 lives. The LRR outcomes attained at these book sizes are
plotted in Figure 8.

While hedge e�ciency improves at a signi�cant rate up until about 10,000 lives, the
impact of sampling basis risk on portfolio hedging outcomes becomes progressively smaller
for larger pension pools, with minimal marginal bene�ts extracted when increasing the
book size beyond 50,000 lives.

In order to evaluate the potential impact of model risk on hedging outcomes, we repeat
our analysis using the simulation and forecasting results generated by the discrete-time
M7-M5 mortality model (Haberman et al., 2014). This facilitates the comparison of the
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Figure 8: Hedge e�ciency by book size indicating the diminishing marginal bene�t of
increasing book size (joint ATSM, 10,000 simulations)

two mortality modelling frameworks and bridges the literature gap between continuous-
time and discrete-time multi-population mortality modelling techniques. As in the previ-
ously presented example, we assume that a retirement income provider is aiming to hedge
the risks associated with a pool of 65 year old males who are promised $1 of in�ation-
indexed income per year upon survival from ages 66 to 100. In this analysis, the simulated
interest rate paths are controlled from the results presented for the continuous-time anal-
ysis.

From the LRR metrics presented in Table 4 and the summary statistics detailed in
Table 3, we do not observe material di�erence between the continuous and discrete-time
mortality modelling frameworks in the analysis of hedge e�ectiveness. For the in�ation-
linked value-based longevity index, the observed LRR metric is 85.51% for a portfolio size
of 100,000 with an associated swap weight parameter of w0 = 0.3093. This is highly com-
parable to the corresponding values of 84.58% and w0 = 0.3056 from the joint ATSM, with
minor di�erences between the two approaches potentially resulting from the discretisation
errors associated with the discrete-time framework.

Table 3: Summary statistics: hedged and unhedged liability present value outcomes by
hedging index (M7-M5 model, 10,000 simulations, 100,000 lives)

Hedging Index Minimum Maximum Mean Variance
Unhedged 9.51 20.03 14.01 2.03
Survival index I0

x,t 10.59 17.72 13.99 0.81

Nominal-linked value index I1
x,t 11.24 16.37 13.97 0.51

In�ation-linked value index Ix,t 11.76 15.72 13.98 0.29

Having estimated both the continuous-time and discrete-time mortality modelling
frameworks, we can as well examine the stability of hedging outcomes when the alter-
nate model is used to calibrate the notional swap parameter w0. That is, we can estimate
the swap weight using the discrete-time mortality model and use this weighting to com-
pute the hedging outcomes associated with the value-based longevity index under the
continuous-time mortality framework (and vice-versa). We �nd that the sensitivity of
risk reduction outcomes to this variation in hedge calibration method is limited. As
shown in Tables 5, 6 and 7, for the continuous-time and discrete-time mortality models,
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Table 4: Longevity risk reduction: percentage reduction in variance showing the greater
e�ectiveness of the in�ation-linked value-based longevity index relative to alternate indices
(M7-M5 model, 10,000 simulations)

Hedging Index
Book Size

1,000 10,000 100,000

Survival index I0
x,t 31.77 54.93 59.90

Nominal-linked value index I1
x,t 38.42 68.59 74.88

In�ation-linked value index Ix,t 43.07 78.23 85.51

the reduction in hedging e�ciency is minimal when the other model is used to compute
w0; a result which is expected given the similar swap weight parameters obtained by the
two di�erent mortality modelling frameworks, suggesting that model risk is limited.

Table 5: In�ation-linked value-based longevity index: model hedge e�ective comparison
indicating similar overall outcomes across the two mortality modelling frameworks (per-
centage reduction in variance, 10,000 simulations, 100,000 lives)

Joint ATSM M7-M5 model
w0 calibrated by same model 84.58% 85.51%
w0 calibrated by alternate model 84.27% 85.11%

Table 6: Nominal value-based longevity index: model hedge e�ective comparison indicat-
ing similar overall outcomes across the two mortality modelling frameworks (percentage
reduction in variance, 10,000 simulations, 100,000 lives)

Joint ATSM M7-M5 model
w0 calibrated by same model 74.07% 74.88%
w0 calibrated by alternate model 73.81% 74.51%

Table 7: Expected survival index: model hedge e�ective comparison indicating similar
overall outcomes across the two mortality modelling frameworks (percentage reduction in
variance, 10,000 simulations, 100,000 lives)

Joint ATSM M7-M5 model
w0 calibrated by same model 58.71% 59.90%
w0 calibrated by alternate model 58.36% 59.58%

We have demonstrated that the universal value-based longevity index facilitates supe-
rior hedging outcomes relative to standard survival rate indices, such as those examined
by the LBRWG. Furthermore, we have used this index to attribute the risks arising from
retirement income portfolios into longevity risk, interest rate risk and in�ation risk com-
ponents. Finally, we have conducted a range of sensitivity analyses on the hedging results,
demonstrating that our �ndings can vary among retirement income portfolios of di�ering
size, but are robust across di�erent age ranges and mortality modelling frameworks.

8 Conclusion

This paper has made threefold contributions to the literature which are motivated by
the fundamental aim of supporting and accelerating the practice of index-based longevity
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hedging for retirement income portfolio risk exposures and establishes a framework which
facilitates the establishment of a liquid market for trading longevity-linked instruments.

A value-based longevity index has been constructed whose functionality is illustrated
with the aid of US economic and mortality data. This contribution demonstrates how the
market can design an index that closely tracks the value of longevity-linked liabilities; a
critical requirement for the development of a viable, liquid longevity risk transfer mar-
ket. Furthermore, the construction of the value-based longevity index has facilitated the
attribution of risk arising from retirement income portfolios into distinct longevity risk,
interest rate risk and in�ation risk components.

Key aspects have been drawn from the LBRWG's longevity basis risk quanti�cation
framework to demonstrate that hedges referencing the value-based longevity index gen-
erate material reductions in basis risk relative to survivor swap instruments based on
standard mortality rate indices such as the Lifemetrics Index. Indeed, the minimisation
and robust quanti�cation of longevity basis risk represents a critical element in establish-
ing the credibility of longevity-linked securities as viable risk management instruments
for retirement income providers in practice.

The third contribution is the comparison of the continuous-time multi-population mor-
tality modelling techniques introduced by Xu et al. (2019) to the discrete-time M7-M5
multi-population mortality model (Haberman et al., 2014) advocated by the LBRWG. De-
spite the di�ering approaches developed by these authors for modelling the relationship
between the mortality patterns of multiple populations, our analysis indicates that the
two frameworks suggest relatively similar outcomes when hedging retirement income port-
folios by means of index-based swap instruments. While, discrete-time multi-population
mortality models have been more widely used in the related literature and can be more
readily �tted due to not having to trial multiple combinations of initial parameter values
in estimation, the continuous-time framework has the advantage of being better integrated
with �nancial applications such as pricing and hedging, particularly when combined with
a�ne interest rate modelling frameworks.

Ultimately by making these contributions to the literature, our research has the poten-
tial to support the transition towards index-based longevity hedging and has established
a framework for facilitating objective valuation of longevity-linked instruments. This is
of critical importance since index-based longevity hedging represents arguably the most
realistic prospect for a viable and liquid longevity risk transfer market, given all of the
complexities associated with indemnity-based longevity hedges.

The analysis in this paper is based on a static hedging framework, where the swap
weight is calibrated at the outset and thereafter does not require periodic rebalancing
in response to evolving �nancial or mortality experience. Given the structuring basis
risk arising from our forward-looking longevity index over the �nal year of the liability's
maturity, we implement the numerical optimisation hedge calibration framework proposed
by the LBRWG. Under this method, each required hedge weighting is estimated with
respect to a unique set of future mortality, interest rate and in�ation scenarios. However,
since these scenario sets must be conditionally simulated from the relevant time point
onwards given the experience already observed in each individual simulation path, it is
computationally much more practical to con�ne our analysis to static hedging strategies
in which only a single initial hedge weighting is required. An alternative hedging strategy
to the LBRWG's numerical optimisation framework is based on delta hedging and may be
more suited to dynamic analyses as demonstrated in Luciano et al. (2017) and De Rosa
et al. (2017).

Our book population is constructed from a synthetic dataset under the assumption
that the aggregation of high income states su�ciently approximates the demographics of
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a typical retirement income portfolio. Future research that is able to utilise authentic
retirement income portfolio mortality data would further enhance the credibility of index-
based longevity hedging as a viable long-term solution for the management of longevity
risk. One could also consider open-ended annuity portfolios with multiple di�erent co-
horts, as well as incorporating dependence between nominal and real bond yields into the
modelling framework.
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Appendix

A Joint A�ne Term Structure Model for Mortality

Starting from a given age x at initial time t, the average mortality intensities µ̄Rx,t and µ̄
B
x,t

of the book and reference populations are modelled as a�ne functions of the time-varying
factors

µ̄Rx,t = δR,0 + δR,1Cx,t + δR,2Rx,t,

µ̄Bx,t = δB,0 + δB,1Cx,t + δB,2Bx,t.

The factors are assumed to evolve independently, implying that the common factor
does not depend on the local factors. This allows the joint ATSM to be decomposed into
two single-population term structure mortality models (Egorov et al., 2011).

Due to the incompleteness of the longevity market, Xu et al. (2019) de�ne a best-
estimate measure Q̄, �xed to observed mortality rates. Factor dynamics under Q̄ can be
represented asdCx,tdRx,t

dBx,t

 = −

φ1 0 0
0 φ2 0
0 0 φ3

Cx,tRx,t

Bx,t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3


dW

Q̄,C
t

dW Q̄,R
t

dW Q̄,B
t

 ,
where φ1, φ2, φ3, σ1, σ2 and σ3 are constant parameters with W Q̄,C

t , W Q̄,R
t and W Q̄,B

t

being Wiener processes under the best-estimate measure.
In order to derive the factor dynamics under the real-world P measure, Girsanov's

theorem (Girsanov, 1960) is used to relate the best-estimate Brownian motions to real-
world Wiener processes. Using an essentially a�ne risk premium speci�cation, the change
of measure can be described as follows

dW
Q̄,C
t

dW Q̄,R
t

dW Q̄,B
t

 =

dW P,C
t

dW P,R
t

dW P,B
t

+

[γ0
1

γ0
2

γ0
3

+

γ1
1,1 γ1

1,2 γ1
1,3

γ1
2,1 γ1

2,2 γ1
3,3

γ1
3,1 γ1

3,2 γ1
3,3

dCx,tdRx,t

dBx,t

]dt, (1)

where the γ parameters are constant and W P,C
t , W P,R

t and W P,B
t are Brownian motions

under the real-world measure. Substituting the vector of best-estimate Wiener processes
into equation (1) and assigning values to the γ parameters as appropriate, the P factor
dynamics can be readily rewritten in the form

dCx,tdRx,t

dBx,t

 = −

ψ1 0 0
0 ψ2 0
0 0 ψ3

Cx,tRx,t

Bx,t

 dt+

σ1 0 0
0 σ2 0
0 0 σ3

dW P,C
t

dW P,R
t

dW P,B
t

 ,
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where ψ1, ψ2 and ψ3 are constant parameters. The real-world measure is used to model
observed mortality dynamics across the two populations and in order to simulate future
factor paths.

Taking a conditional expectation with respect to the best-estimate probability mea-
sure, Xu et al. (2019) show that survival probabilities for the reference and book popula-
tions are respectively given by

SR(x, t, T ) = eB1(t,T )Cx,t+B2(t,T )Rx,t+AR(t,T ),

SB(x, t, T ) = eB1(t,T )Cx,t+B3(t,T )Bx,t+AB(t,T ),

where

Bj(t, T ) = −1− e−φj(T−t)

φj
for j = 1, 2, 3,

AR(t, T ) =
1

2

∑
j=1,2

σ2
j

φ3
j

[
1

2
(1− e−2φj(T−t))− 2(1− e−φj(T−t)) + φj(T − t)],

AB(t, T ) =
1

2

∑
j=1,3

σ2
j

φ3
j

[
1

2
(1− e−2φj(T−t))− 2(1− e−φj(T−t)) + φj(T − t)].

The average force of mortality curve for each population is computed as

µ̄ix,t(T ) = − 1

T − t
log[Si(x, t, T )]

= − 1

T − t
[B1(t, T )Cx,t +Bj(t, T )ix,t + Ait(t, T )]

=
1− e−φ1(T−t)

φ1(T − t)
Cx,t +

1− e−φj(T−t)

φj(T − t)
ix,t −

Ait(t, T )

T − t
, for i =

{
R, (j = 2)

B, (j = 3)

}
.

The model can be written in state space form and can therefore be estimated us-
ing the Kalman �lter (Kalman, 1960). In particular, the state space form consists of
a measurement equation, which speci�es the relationship between the average mortality
intensities µ̄x,t and the factors Rx,t, Bx,t and Cx,t, as well as a state transition equation
which describes the time series dynamics of the latent time-varying factors.

Xu et al. (2019) show that the measurement equation is

~µx,t = B ~Xt − ~A+ ~εt, ~εt ∼ N2k(~0, H),
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where

~µx,t =



µ̄Rx,t(τ1)
...

µ̄Rx,t(τk)
µ̄Bx,t(τ1)

...
µ̄Bx,t(τk)


, B =
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φ1τ1
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...

...
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 ,
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φ3
i
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2
(1− e−2φiτk)− 2(1− e−φiτk) + φiτk]


,

H is the (diagonal) covariance matrix of the normal error terms and k is the number of
ages in the mortality dataset.

The state transition equation is given by

~Xt = Ψ ~Xt−1 + ~ηt, ~ηt ∼ N3(~0, Q),

where

Ψ =

e−ψ1 0 0
0 e−ψ2 0
0 0 e−ψ3

 , Q =


σ2

1

2ψ1
(1− e−2ψ1) 0 0

0
σ2

2

2ψ2
(1− e−2ψ2) 0

0 0
σ2

3

2ψ3
(1− e−2ψ3)

 .
B M7-M5 Model Forecasting and Simulation

To generate future mortality rate forecasts and simulations in the reference population,
the factors κRt,1, κ

R
t,2 and κ

R
t,3 are modelled as a multivariate random walk with drift

κRt,1κRt,2
κRt,3

 =

µR1µR2
µR3

+

κRt−1,1

κRt−1,2

κRt−1,3

+

εRt,1εRt,2
εRt,3

 ,
εRt,1εRt,2
εRt,3

 ∼ N3(~0,Σ)

where µR1 , µ
R
2 , and µR3 are the constant drift parameters and εRt,1, ε

R
t,2 and εRt,3 are error

terms that follow a multivariate normal distribution with a mean vector ~0 and a covariance
matrix Σ.

To generate future mortality rate projections for the book population, the factors κBt,1
and κBt,2 are modelled as a �rst order vector auto-regression process, VAR(1)

[
κBt,1
κBt,2

]
=

[
φB1
φB2

]
+

[
φB1,1 φB1,2
φB2,1 φB2,2

] [
κBt−1,1

κBt−1,2

]
+

[
εBt,1
εBt,2

]
,

[
εBt,1
εBt,2

]
∼ N2(~0,Φ)

where φB1 , φ
B
2 , φ

B
1,1, φ

B
1,2, φ

B
2,1 and φB2,2 are constant parameters and εBt,1 and εBt,2 are error

terms that follow a multivariate normal distribution with a mean vector ~0 and a covariance
matrix Φ. We also assume independence between these error terms and those of the
reference population time series model.
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C Dynamic Nelson-Siegel Model

Beginning with the nominal interest rate model, we �rst de�ne the three latent time-
varying factors: a level factor LNt , a slope factor SNt and a curvature factor CN

t . As the
independent-factor DNS model is not constrained to a unique speci�cation of the fac-
tor dynamics under the real-world P probability measure (Christensen et al., 2011), we
initially present the risk-neutral Q dynamics of the factors. The risk-neutral measure sup-
ports the valuation of future cash�ows and has the following factor dynamic speci�cation
under our modelling frameworkdLNtdSNt

dCN
t

 = −

0 0 0
0 λN −λN
0 0 λN

LNtSNt
CN
t

 dt+

σN1 0 0
0 σN2 0
0 0 σN3


dW

Q,LN

t

dWQ,SN

t

dWQ,CN

t

 ,
where λN is the Nelson-Siegel parameter, σN1 , σ

N
2 and σN3 are the factor volatility param-

eters, while WQ,LN

t , WQ,SN

t and WQ,CN

t are the corresponding Wiener processes.
The real-world measure, P , is used to model observed bond yield data and in order

to simulate future factor paths. However, Christensen et al. (2011) note that in order
to maintain a�ne dynamics under the real world probability measure, an essentially-
a�ne risk premium speci�cation must be assumed upon invoking the Girsanov theorem
(Girsanov, 1960) when changing the measure from Q to P . Therefore, the real-world
factor dynamics are represented as

dLNtdSNt
dCN

t

 =

kN1 0 0
0 kN2 0
0 0 kN3

[θ1,N

θ2,N

θ3,N

−
LNtSNt
CN
t

]dt+

σN1 0 0
0 σN2 0
0 0 σN3


dW

P,LN

t

dW P,SN

t

dW P,CN

t

 ,
where kN1 , k

N
2 , k

N
3 , θ

N
1 , θ

N
2 and θN3 are constant real-world parameters, W P,LN

t , W P,SN

t

and W P,CN

t are Wiener processes under the P measure.
Given the model dynamics under the risk neutral measure, the zero coupon nominal

bond yield at time t with τ months maturity is given by the yield function

yNt (τ) = LNt + SNt (
1− e−λN τ

λNτ
) + CN

t (
1− e−λN τ

λNτ
− e−λN τ ).

As with the joint ATSM, the DNS interest rate model can be expressed in state space
form in terms of a measurement equation and a state transition equation. Therefore, it
can be estimated using the Kalman �lter (Kalman, 1960).

The measurement equation is

~yNt = BN ~XN
t + ~εNt , ~εNt ∼ Nn(~0, HN),

where

~yNt =

y
N
t (τ1)
...

yNt (τn)

 , BN =


1 1−e−λNτ1

λN τ1
1−e−λNτ1
λN τ1

− e−λN τ1
...

...
...

1 1−e−λNτn
λN τn

1−e−λNτn
λN τn

− e−λN τn

 , ~XN
t =

LNtSNt
CN
t

 ,

~εNt =

ε
N
t (τ1)
...

εNt (τn)

 ,
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HN is the (diagonal) covariance matrix of the normal error terms and n = 11 observed
maturities.

The state transition equation is given by

[ ~XN
t − ~θN ] = κN [ ~XN

t−1 − ~θN ]− ~ηt, ~ηt ∼ N3(~0, QN),

where

~θN =

θNLθNS
θNC

 , κN =

e−κN1 ∆t 0 0

0 e−κ
N
2 ∆t 0

0 0 e−κ
N
3 ∆t

 ,

QN =


σ2

1(1−e−2κN1 ∆t)

2κN1
0 0

0
σ2

2(1−e−2κN2 ∆t)

2κN2
0

0 0
σ2

3(1−e−2κN3 ∆t)

2κN3


and ∆t = 1

12
(for monthly data).

D Numerical Optimisation

Following the approach in Li et al. (2017), the swap weight parameter w0 is chosen in
order to minimise the variance of the quantity

ω−x∑
i=1

lBx+i,t+i × PR(t, t+ i) + w0

ω−x−1∑
i=1

(Ix+i,t+i − Ifx+i,t+i)× PN(t, t+ i),

with respect to simulated future mortality, interest rate and in�ation experience.
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