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(1)  Consider a European call option and a European put option on a nondividend-paying 
stock.  You are given: 
 

(i) The current price of the stock is $60. 
(ii) The call option currently sells for $0.15 more than the put option. 
(iii) Both the call option and put option will expire in 4 years. 
(iv) Both the call option and put option have a strike price of $70. 

 
Calculate the continuously compounded risk-free interest rate. 
 

(A)  0.039 
(B)  0.049 
(C)  0.059 
(D)  0.069 
(E)  0.079 
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Solution to (1)    Answer: (A) 
      

The put-call parity formula for a European call and a European put on a nondividend-
paying stock with the same strike price and maturity date is 
 

C − P = S0 − Ke−rT. 
 
We are given that C − P = 0.15, S0 = 60, K = 70 and T = 4.  Then, r = 0.039. 
 
 
 
 
 
 
 
 
 
Remark 1:  If the stock pays n dividends of fixed amounts D1, D2,…, Dn at fixed times t1, 
t2,…, tn prior to the option maturity date, T, then the put-call parity formula for European 
put and call options is  

C − P = S0 − PV0,T(Div) − Ke−rT,  

where PV0,T(Div) ∑
=

−=
n

i

irt
ieD

1

is the present value of all dividends up to time T.  The 

difference, S0 − PV0,T(Div), is the prepaid forward price )(,0 SF P
T . 

 
 
Remark 2:  The put-call parity formula above does not hold for American put and call 
options.  For the American case, the parity relationship becomes 
 

S0 − PV0,T(Div) − K ≤ C − P ≤ S0 − Ke−rT. 
 

This result is given in Appendix 9A of McDonald (2006) but is not required for Exam 
MFE/3F. Nevertheless, you may want to try proving the inequalities as follows: 
For the first inequality, consider a portfolio consisting of a European call plus an amount 
of cash equal to PV0,T(Div) + K. 
For the second inequality, consider a portfolio of an American put option plus one share 
of the stock. 
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(2)  Near market closing time on a given day, you lose access to stock prices, but some 
European call and put prices for a stock are available as follows: 
  

Strike Price Call Price Put Price 

$40                   $11                   $3 

$50                   $6                   $8 

$55                   $3                   $11 
 
All six options have the same expiration date. 
 
After reviewing the information above, John tells Mary and Peter that no arbitrage 
opportunities can arise from these prices.   
 
Mary disagrees with John.  She argues that one could use the following portfolio to 
obtain arbitrage profit: Long one call option with strike price 40; short three call options 
with strike price 50; lend $1; and long some calls with strike price 55.  
 
Peter also disagrees with John.  He claims that the following portfolio, which is different 
from Mary’s, can produce arbitrage profit: Long 2 calls and short 2 puts with strike price 
55; long 1 call and short 1 put with strike price 40; lend $2; and short some calls and long 
the same number of puts with strike price 50.  
  
 
 
Which of the following statements is true? 
 
 
(A)  Only John is correct. 
 
(B)  Only Mary is correct. 
 
(C)  Only Peter is correct. 
 
(D)  Both Mary and Peter are correct. 
 
(E)  None of them is correct. 
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Solution to (2)  Answer:  (D) 
 
The prices are not arbitrage-free.  To show that Mary’s portfolio yields arbitrage profit, 
we follow the analysis in Table 9.7 on page 302 of McDonald (2006).   
                           
 Time 0     Time T Time T  Time T Time T 

  ST  < 40 40≤ ST < 50 50≤ ST < 55 ST ≥ 55 
Buy 1 call 
Strike 40 

− 11    0   ST – 40    ST – 40   ST – 40 

Sell 3 calls 
Strike 50 

+ 18    0       0 −3(ST – 50) −3(ST – 50) 

Lend $1 − 1  erT      erT      erT    erT 
Buy 2 calls 
strike 55 

− 6    0      0      0 2(ST – 55) 

Total   0  erT > 0  erT + ST – 
40 > 0 

erT + 2(55 
−ST) > 0  

    erT > 0 

 
 
Peter’s portfolio makes arbitrage profit, because: 
                           
 Time-0 cash flow     Time-T cash flow 
Buy 2 calls & sells 2 puts 
Strike 55 

  2(−3 + 11) = 16  2(ST − 55) 

Buy 1 call & sell 1 put 
Strike 40 

−11 + 3 = −8 
 

ST − 40   

Lend $2                        −2  2erT  
Sell 3 calls & buy 3 puts 
Strike 50 

      3(6 − 8) = −6  3(50 − ST) 

Total                         0  2erT 
 
Remarks:  Note that Mary’s portfolio has no put options.  The call option prices are not 
arbitrage-free; they do not satisfy the convexity condition (9.17) on page 300 of 
McDonald (2006).  The time-T cash flow column in Peter’s portfolio is due to the 
identity 
  max[0, S – K]  −  max[0, K – S]  =  S − K 
(see also page 44). 
 
In Loss Models, the textbook for Exam C/4, max[0, α] is denoted as α+.  It appears in the 
context of stop-loss insurance, (S – d)+, with S being the claim random variable and d the 
deductible.  The identity above is a particular case of 
    x  =  x+  −  (−x)+, 
which says that every number is the difference between its positive part and negative 
part. 
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(3)  An insurance company sells single premium deferred annuity contracts with return 
linked to a stock index, the time-t value of one unit of which is denoted by S(t).  The 
contracts offer a minimum guarantee return rate of g%.  At time 0, a single premium of 
amount π is paid by the policyholder, and π×y% is deducted by the insurance company.  
Thus, at the contract maturity date, T, the insurance company will pay the policyholder 

π×(1 − y%)×Max[S(T)/S(0), (1 + g%)T]. 
  
You are given the following information:    
 

(i) The contract will mature in one year. 
(ii) The minimum guarantee rate of return, g%, is 3%. 
(iii) Dividends are incorporated in the stock index.  That is, the stock index is 

constructed with all stock dividends reinvested. 
(iv) S(0) =100. 
(v) The price of a one-year European put option, with strike price of $103, on the 

stock index is $15.21. 
 

Determine y%, so that the insurance company does not make or lose money on this 
contract.
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Solution to (3)  
 
The payoff at the contract maturity date is 
  π×(1 − y%)×Max[S(T)/S(0), (1 + g%)T] 
   =  π×(1 − y%)×Max[S(1)/S(0), (1 + g%)1]   because T = 1 

=  [π/S(0)](1 − y%)Max[S(1), S(0)(1 + g%)] 
=  (π/100)(1 − y%)Max[S(1), 103]    because g=3 & S(0)=100 
=  (π/100)(1 − y%){S(1) + Max[0, 103 – S(1)]}. 

 
Now, Max[0, 103 – S(1)] is the payoff of a one-year European put option, with strike 
price $103, on the stock index; the time-0 price of this option is given to be is $15.21.  
Dividends are incorporated in the stock index (i.e., δ = 0); therefore, S(0) is the time-0 
price for a time-1 payoff of amount S(1).  Because of the no-arbitrage principle, the time-
0 price of the contract must be 
  (π/100)(1 − y%){S(0) + 15.21} 
  =  (π/100)(1 − y%)×115.21. 
 
Therefore, the “break-even” equation is 
  π  =  (π/100)(1 − y%)×115.21, 
or 
  y%  =  100×(1  −  1/1.1521)%  =  13.202% 
 
 
 
 
 
 
Remark 1 Many stock indexes, such as S&P500, do not incorporate dividend 
reinvestments.  In such cases, the time-0 cost for receiving S(1) at time 1 is the prepaid 
forward price 0,1( )PF S , which is less than S(0). 
 
Remark 2 The identities 
  Max[S(T), K]  =  K  +  Max[S(T) − K, 0]  =  K  +  (S(T) − K)+ 
and 
  Max[S(T), K]  =  S(T)  +  Max[0, K − S(T)]  =  S(T)  +  (K − S(T))+ 
can lead to a derivation of the put-call parity formula.  Such identities are useful for 
understanding Section 14.6 Exchange Options in McDonald (2006). 
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(4)  For a two-period binomial model, you are given: 
 

(i) Each period is one year.   
(ii) The current price for a non-dividend paying stock is $20. 
(iii) u = 1.2840, where u is one plus the rate of capital gain on the stock per period if 

the stock price goes up. 
(iv) d = 0.8607, where d is one plus the rate of capital loss on the stock per period if 

the stock price goes down. 
(v)  The continuously compounded risk-free interest rate is 5%. 

 
Calculate the price of an American call option on the stock with a strike price of $22. 
 
 

(A) $0 
(B) $1 
(C) $2 
(D) $3 
(E) $4 
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Solution to (4)   Answer: (C) 
 
First, we construct the two-period binomial tree for the stock price.  
 
 
 
 
 
 
 
 
 
 
 
 
The calculations for the stock prices at various nodes are as follows: 
 
Su = 20 × 1.2840 = 25.680 
Sd = 20 × 0.8607 = 17.214 
Suu = 25.68 × 1.2840 = 32.9731 
Sud = Sdu = 17.214 × 1.2840 = 22.1028 
Sdd = 17.214 × 0.8607 = 14.8161 
 
The risk-neutral probability for the stock price to go up is 

4502.0
8607.02840.1

8607.0*
05.0

=
−

−
=

−
−

=
e

du
dep

rh
. 

Thus, the risk-neutral probability for the stock price to go down is 0.5498. 
 
If the option is exercised at time 2, the value of the call would be  
Cuu = (32.9731 – 22)+ = 10.9731 
Cud = (22.1028 – 22)+ = 0.1028   
Cdd = (14.8161 – 22)+ = 0   
 
If the option is European, then Cu = e−0.05[0.4502Cuu + 0.5498Cud] = 4.7530 and  
Cd = e−0.05[0.4502Cud + 0.5498Cdd] = 0.0440. 
But since the option is American, we should compare Cu and Cd with the value of the 
option if it is exercised at time 1, which is 3.68 and 0, respectively. Since 3.68 < 4.7530 
and 0 < 0.0440, it is not optimal to exercise the option at time 1 whether the stock is in 
the up or down state. Thus the value of the option at time 1 is either 4.7530 or 0.0440.  
 
Finally, the value of the call is  
C = e−0.05[0.4502(4.7530) + 0.5498(0.0440)] = 2.0585. 

20 

17.214 

25.680 

22.1028 

32.9731 

Year 0 Year 1 Year 2 

14.8161 
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Remark:  Since the stock pays no dividends, the price of an American call is the same as 
that of a European call.  See pages 294-295 of McDonald (2006).  The European option 
price can be calculated using the binomial probability formula.  See formula (11.17) on 
page 358 and formula (19.1) on page 618 of McDonald (2006).  The option price is 
 

e−r(2h)[ uuCp 2*
2
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 + udCpp *)1(*

1
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 + ddCp 2*)1(

0
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ] 

=  e−0.1 [(0.4502)2×10.9731  +  2×0.4502×0.5498×0.1028  +  0]   
=  2.0507 
 
Formula (19.1) is in the syllabus of Exam C/4. 
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(5)  Consider a 9-month dollar-denominated American put option on British pounds. You 
are given that: 
 

(i)  The current exchange rate is 1.43 US dollars per pound.  
(ii)  The strike price of the put is 1.56 US dollars per pound. 
(iii) The volatility of the exchange rate is σ = 0.3.  
(iv) The US dollar continuously compounded risk-free interest rate is 8%. 
(v) The British pound continuously compounded risk-free interest rate is 9%. 
 

Using a three-period binomial model, calculate the price of the put. 
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Solution to (5)  
 
Each period is of length h = 0.25. Using the first two formulas on page 332 of McDonald 
(2006):  

u = exp[–0.01×0.25 + 0.3× 25.0 ] = exp(0.1475) = 1.158933, 
d = exp[–0.01×0.25 − 0.3× 25.0 ] = exp(−0.1525) = 0.858559. 

Using formula (10.13), the risk-neutral probability of an up move is  

4626.0
858559.0158933.1
858559.0*

25.001.0

=
−
−

=
×−ep .   

The risk-neutral probability of a down move is thus 0.5374. The 3-period binomial tree 
for the exchange rate is shown below. The numbers within parentheses are the payoffs of 
the put option if exercised.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The payoffs of the put at maturity (at time 3h) are  
Puuu = 0, Puud = 0, Pudd = 0.3384 and Pddd = 0.6550. 
 
Now we calculate values of the put at time 2h for various states of the exchange rate. 
 
If the put is European, then  
Puu = 0,  
Pud = e−0.02[0.4626Puud + 0.5374Pudd] = 0.1783,  
Pdd = e−0.02[0. 4626Pudd + 0.5374Pddd] = 0.4985.  
But since the option is American, we should compare Puu, Pud and Pdd with the values of 
the option if it is exercised at time 2h, which are 0, 0.1371 and 0.5059, respectively. 
Since 0.4985 < 0.5059, it is optimal to exercise the option at time 2h if the exchange rate 
has gone down two times before. Thus the values of the option at time 2h are Puu = 0,  
Pud = 0.1783 and Pdd = 0.5059.  
  

1.43 
(0.13) 

1.2277 
(0.3323) 

1.6573 
(0) 

1.4229 
(0.1371) 

1.2216 
(0.3384) 

1.9207 
(0) 

2.2259 
(0) 

Time 0 Time h Time 2h Time 3h 

1.6490 
(0)

1.0541 
(0.5059) 

0.9050 
(0.6550) 
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Now we calculate values of the put at time h for various states of the exchange rate. 
 
If the put is European, then  
Pu = e−0.02[0.4626Puu + 0.5374Pud] = 0.0939,  
Pd = e−0.02[0.4626Pud + 0.5374Pdd] = 0.3474.  
But since the option is American, we should compare Pu and Pd with the values of the 
option if it is exercised at time h, which are 0 and 0.3323, respectively. Since 0.3474 > 
0.3323, it is not optimal to exercise the option at time h. Thus the values of the option at 
time h are Pu = 0.0939 and Pd = 0.3474.  

Finally, discount and average Pu and Pd to get the time-0 price,  

  P = e−0.02[0.4626Pu + 0.5374Pd] = 0.2256.  
Since it is greater than 0.13, it is not optimal to exercise the option at time 0 and hence 
the price of the put is 0.2256.  
 
 
 
 
 
 
 
 

Remarks:  (1) Because 
hhrhhr

hhrhr

ee

ee
σ−δ−σ+δ−

σ−δ−δ−

−

−
)()(

)()(
 = 

hh

h

ee

e
σ−σ

σ−

−

−1  = 
heσ+1

1 , we 

can also calculate the risk-neutral probability p* as follows: 

  p*  =  
heσ+1

1  = 
25.03.01

1

e+
 = 15.01

1
e+

 = 0.46257. 

 

(2)  1 − p*  = 1 − 
heσ+1

1  =  
h

h

e

e
σ

σ

+1
 = 

he σ−+1

1 . 

Because σ > 0, we have the inequalities   
p* < ½ < 1 – p*. 
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(6)  You are considering the purchase of 100 European call options on a stock, which 
pays dividends continuously at a rate proportional to its price. Assume that the Black-
Scholes framework holds.  You are given: 
 
(i)  The strike price is $25. 
(ii)  The options expire in 3 months.   
(iii) δ = 0.03.  
(iv) The stock is currently selling for $20. 
(v)  σ = 0.24   
(vi) The continuously compounded risk-free interest rate is 5%. 
 
Calculate the price of the block of 100 options. 
 

(A) $0.04 
(B) $1.93 
(C) $3.50 
(D) $4.20 
(E) $5.09 
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Solution  to (6)   Answer: (C) 
 
  

)()(),,,,,( 21 dNKedNSeTrKSC rTT −− −= δδσ     (12.1) 
with 

T

TrKS
d

σ

σδ )
2
1()/ln( 2

1

+−+
=       (12.2a) 

Tdd σ−= 12         (12.2b) 
 
Because S = $20, K = $25, σ = 0.24, r = 0.05, T = 3/12 = 0.25, and δ = 0.03, we have 

25.024.0

25.0)24.0
2
103.005.0()25/20ln( 2

1

+−+
=d  =  −1.75786 

and 
 d2  =  −1.75786 25.024.0−   =  −1.87786 
 
 
Because d1 and d2 are negative, use )(1)( 11 dNdN −−=  and ).(1)( 22 dNdN −−=    
In Exam MFE/3F, round –d1 to 1.76 before looking up the standard normal distribution 
table.  Thus, N(d1) is 0392.09608.01 =− .  Similarly, round –d2 to 1.88, and N(d2) is thus 

0301.09699.01 =− . 
 
Formula (12.1) becomes 

0350.0)0301.0(25)0392.0(20 )25.0)(05.0()25.0)(03.0( =−= −− eeC  
 
Cost of the block of 100 options = 100 × 0.0350 = $3.50   
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(7)  Company A is a U.S. international company, and Company B is a Japanese local 
company.  Company A is negotiating with Company B to sell its operation in Tokyo to 
Company B.  The deal will be settled in Japanese yen.  To avoid a loss at the time when 
the deal is closed due to a sudden devaluation of yen relative to dollar, Company A has 
decided to buy at-the-money dollar-denominated yen put of the European type to hedge 
this risk.   
 
You are given the following information: 
 

(i) The deal will be closed 3 months from now. 
(ii) The sale price of the Tokyo operation has been settled at 120 billion 

Japanese yen. 
(iii) The continuously compounded risk-free interest rate in the U.S. is 3.5%. 
(iv) The continuously compounded risk-free interest rate in Japan is 1.5%. 
(v) The current exchange rate is 1 U.S. dollar = 120 Japanese yen. 
(vi) The natural logarithm of the yen per dollar exchange rate is an arithmetic 

Brownian motion with daily volatility 0.261712%. 
(vii)    1 year = 365 days; 3 months = ¼ year. 

 

Calculate Company A’s option cost.  
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Solution to (7) 
 
Let X(t) be the exchange rate of U.S. dollar per Japanese yen at time t.  That is, at time t, 
    ¥1  =  $X(t).   
We are given that X(0) = 1/120.   
 
At time ¼, Company A will receive ¥ 120 billion, which is exchanged to  
$[120 billion × X(¼)].  However, Company A would like to have 
   $ Max[1 billion,  120 billion × X(¼)], 
which can be decomposed as 

$120 billion × X(¼)  +  $ Max[1 billion  –  120 billion × X(¼), 0], 
or 

 $120 billion × {X(¼)  +  Max[120−1 –  X(¼), 0]}. 
 
Thus, Company A purchases 120 billion units of a put option whose payoff three months 
from now is 

$ Max[120−1 –  X(¼), 0]. 
 

The exchange rate can be viewed as the price, in US dollar, of a traded asset, which is the 
Japanese yen.  The continuously compounded risk-free interest rate in Japan can be 
interpreted as δ, the dividend yield of the asset.  See also page 381 of McDonald (2006) 
for the Garman-Kohlhagen model.  Then, we have 
  r = 0.035, δ = 0.015, S = X(0) = 1/120, K = 1/120, T = ¼. 
 
Because the logarithm of the exchange rate of yen per dollar is an arithmetic Brownian 
motion, its negative, which is the logarithm of the exchange rate of dollar per yen, is also 
an arithmetic Brownian motion and has the SAME volatility.  Therefore, {X(t)} is a 
geometric Brownian motion, and the put option can be priced using the Black-Scholes 
formula for European put options.  It remains to determine the value of σ, which is given 
by the equation   

    σ
365
1  =  0.261712 %. 

Hence, 
σ  =  0.05.  

Therefore, 

 d1  =  
T

Tr
σ

σ+δ− )2/( 2
  =  

4/105.0
4/)2/05.0015.0035.0( 2+−   =  0.2125 

and 
  
 d2  =  d1  −  σ√T  =  0.2125  −  0.05/2  =  0.1875. 
By (12.3) of McDonald (2006), the time-0 price of 120 billion units of the put option is 

$120 billion × [Ke−rTN(−d2)  −  X(0)e−δTN(−d1)] 
=  $ [e−rTN(−d2)  −  e−δTN(−d1)] billion    because K = X(0) = 1/120 
=  $ {e−rT[1 − N(d2)]  −  e−δT[1 − N(d1)]} billion 
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In Exam MFE/3F, you will be given a standard normal distribution table.  Use the value 
of N(0.21) for N(d1), and N(0.19) for N(d1). 
 
Because N(0.21) = 0.5832, N(0.19) = 0.5753, e−rT = e−0.035×0.25

 = 0.9913, and  
e−δT = e−0.015×0.25

 = 0.9963, Company A’s option cost is 
$0.9913×0.4247  −  0.9963×0.4168  =  0.005747 billion  ≈  $5.75 million. 
 
 
Remarks:  (1) Suppose that the problem is to be solved using options on the exchange 
rate of Japanese yen per US dollar, i.e., using yen-denominated options.  Let  

$1  =  ¥U(t)  
at time t, i.e., U(t) = 1/X(t).   
 
Because Company A is worried that the dollar may increase in value with respect to the 
yen, it buys 1 billion units of a 3-month yen-denominated European call option, with 
exercise price ¥120.  The payoff of the option at time ¼ is 

¥ Max[U(¼)  −  120, 0]. 
 

To apply the Black-Scholes call option formula (12.1) to determine the time-0 price in 
yen, use 
  r = 0.015, δ = 0.035, S = U(0) = 120, K = 120, T = ¼, and σ = 0.05. 
Then, divide this price by 120 to get the time-0 option price in dollars.  We get the same 
price as above, because d1 here is –d2 of above. 
 
The above is a special case of formula (9.7) on page 292 of McDonald (2006). 
 
(2)  There is a cheaper solution for Company A.  At time 0, borrow  
   ¥ 120×exp(− ¼ r¥) billion, 
and immediately convert this amount to US dollars.  The loan is repaid with interest at 
time ¼ when the deal is closed. 
On the other hand, with the option purchase, Company A will benefit if the yen increases 
in value with respect to the dollar. 
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(8)  You are considering the purchase of an American call option on a nondividend-
paying stock.  Assume the Black-Scholes framework.  You are given: 
 
(i)  The stock is currently selling for $40. 
(ii) The strike price of the option is $41.5  
(iii) The option expires in 3 months.   
(iv) The stock’s volatility is 30%. 
(v)  The current call option delta is 0.5.  
 
Determine the current price of the option. 
 
 

(A)   20 – 20.453 ∫ ∞−
−15.0 2/ d

2
xe x  

(B)  20 – 16.138 ∫ ∞−
−15.0 2/ d

2
xe x  

(C)  20 – 40.453 ∫ ∞−
−15.0 2/ d

2
xe x  

(D)  453.20d138.16
15.0 2/2

−∫ ∞−
− xe x  

(E)  ∫ ∞−
−15.0 2/ d453.40

2
xe x – 20.453 
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Solution to (8)  Answer: (D) 
 
Since it is never optimal to exercise an American call option before maturity if the stock 
pays no dividends, we can price the call option using the European call option formula 

)()( 21 dNKedSNC rT−−= ,    

where 
T

TrKS
d

σ

σ )
2
1()/ln( 2

1

++
=  and Tdd σ−= 12 . 

      
Because the call option delta is N(d1) and it is given to be 0.5, we have d1 = 0.   
Hence,  

d2 = – 25.03.0 × = –0.15 . 
 
To find the continuously compounded risk-free interest rate, use the equation 

0
25.03.0

25.0)3.0
2
1()5.41/40ln( 2

1 =
××++

=
r

d , 

which gives r = 0.1023.  
 
Thus, 
C = 40N(0) – 41.5e–0.1023 × 0.25N(–0.15) 
    = 20 – 40.453[1 – N(0.15)]  
    = 40.453N(0.15) – 20.453 

    = ∫ ∞−
−

π

15.0 2/ d
2
453.40 2

xe x – 20.453 

    = 453.20d138.16
15.0 2/2

−∫ ∞−
− xe x  
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(9)  Consider the Black-Scholes framework.  A market-maker, who delta-hedges, sells a 
three-month at-the-money European call option on a nondividend-paying stock.  You are 
given that: 
 

(i) The current stock price is $50.   
(ii) The continuously compounded risk-free interest rate is 10%.   
(iii) The call option delta is 0.6179. 
(iv) There are 365 days in the year. 

 
If, after one day, the market-maker has zero profit or loss, determine the stock price move 
over the day. 

 
(A)  0.41 
(B)  0.52 
(C)  0.63 
(D)  0.75 
(E)  1.11 
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Solution to (9) 
 

According to the first paragraph on page 429 of McDonald (2006), such a stock 
price move is given by plus or minus of 
    σ S(0) h , 
where h = 1/365 and S(0) = 50.  It remains to find σ.   
 
Because the stock pays no dividends (i.e., δ = 0), it follows from the bottom of page 383 
that Δ = N(d1).  By the condition N(d1) = 0.6179, we get d1 = 0.3.  Because S = K and  
δ = 0, formula (12.2a) is 

    d1  =  
T

Tr
σ
σ+ )2/( 2

 

or 

    ½σ2  –  
T

d1 σ  +  r  =  0. 

With d1 = 0.3, r = 0.1, and T = 1/4, the quadratic equation becomes 
    ½σ2  –  0.6σ  +  0.1  =  0,  
whose roots can be found by using the quadratic formula or by factorization,  
    ½(σ  −  1)(σ  −  0.2)  =  0. 
We reject σ = 1 because such a volatility seems too large (and none of the five answers 
fit).  Hence, 

σ S(0) h   =  0.2 × 50 × 0.052342  ≈  0.52. 
 

 
Remarks:   The Itô Lemma in Chapter 20 of McDonald (2006) can help us understand 
Section 13.4.  Let C(S, t) be the price of the call option at time t if the stock price is S at 
that time.  We use the following notation 

CS(S, t)  = ),( tSC
S∂
∂ ,  CSS(S, t)  =  ),(2

2
tSC

S∂

∂ ,  Ct(S, t)  = ),( tSC
t∂

∂ , 

Δt  =  CS(S(t), t),  Γt  =  CSS(S(t), t),  θt  =  Ct(S(t), t). 
 
At time t, the so-called market-maker sells one call option, and he delta-hedges, i.e., he 
buys delta, Δt, shares of the stock.  At time t + dt, the stock price moves to S(t + dt), and 
option price becomes C(S(t + dt), t + dt).  The interest expense for his position is 
    [ΔtS(t)  −  C(S(t), t)](rdt). 
Thus, his profit at time t + dt is 

Δt[S(t + dt) − S(t)]  −  [C(S(t + dt), t + dt)  − C(S(t), t)]  −  [ΔtS(t)  −  C(S(t), t)](rdt) 
 =  ΔtdS(t)  −  dC(S(t), t)  −  [ΔtS(t)  −  C(S(t), t)](rdt).   (*) 
 
We learn from Section 20.6 that   
     dC(S(t), t) =  CS(S(t), t)dS(t)  +  ½CSS(S(t), t)[dS(t)]2  +  Ct(S(t), t)dt  (20.28) 
  =  Δt dS(t)  +  ½Γt [dS(t)]2  +  θt dt.     (**) 
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Because dS(t) = S(t)[α dt  +  σ dZ(t)], it follows from the multiplication rules (20.17) that 
   [dS(t)]2  =  [S(t)]2 σ2 dt,     (***) 
which should be compared with (13.8).  Substituting (***) in (**) yields 
  dC(S(t), t) =  Δt dS(t)  +  ½Γt [S(t)]2 σ2 dt  +  θt dt, 
application of which to (*) shows that the market-maker’s profit at time t + dt is 
  −{½Γt [S(t)]2 σ2 dt  +  θt dt}  −  [ΔtS(t)  −  C(S(t), t)](rdt) 
  =  −{½Γt [S(t)]2 σ2  +  θt  +  [ΔtS(t)  −  C(S(t), t)]r}dt,  (****) 
which is the same as (13.9) if dt can be h.   
 
Now, at time t, the value of stock price, S(t), is known.  Hence, expression (****), the 
market-maker’s profit at time t+dt, is not stochastic.  If there are no riskless arbitrages, 
then quantity within the braces in (****) must be zero, 
  Ct(S, t)  +   ½σ2S2CSS(S, t)  +  rSCS(S, t)  −  rC(S, t)  =  0, 
which is the celebrated Black-Scholes equation (13.10) for the price of an option on a 
nondividend-paying stock.  Equation (21.11) in McDonald (2006) generalizes (13.10) to 
the case where the stock pays dividends continuously and proportional to its price. 
 
Let us consider the substitutions   

         dt →  h 
  dS(t) = S(t + dt) − S(t) → S(t + h) − S(t), 

  dC(S(t), t) = C(S(t + dt), t + dt)  − C(S(t), t) → C(S(t + h), t + h) − C(S(t), t).  
Then, equation (**) leads to the approximation formula 
  C(S(t + h), t + h) − C(S(t), t)  ≈  Δt [S(t + h) − S(t)]  +  ½Γt [S(t + h) − S(t)]2  +  θt h, 
which is given near the top of page 665.  Figure 13.3 on page 426 is an illustration of this 
approximation.  Note that in formula (13.6) on page 426, the equal sign, =, should be 
replaced by an approximately equal sign such as ≈.   
 
Although (***) holds because {S(t)} is a geometric Brownian motion, the analogous 
equation, 
   [S(t + h) − S(t)]2 =  [σS(t)]2h,  h > 0,    
which should be compared with (13.8) on page 429, almost never holds.  If it turns out 
that it holds, then the market maker’s profit is approximated by the right-hand side of 
(13.9).  The expression is zero because of the Black-Scholes partial differential equation. 
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(10)  Consider the Black-Scholes framework.  Let S(t) be the stock price at time t, t ≥ 0.  
Define X(t) = ln[S(t)].  You are given the following three statements concerning X(t).    
 

(i) {X(t), t ≥ 0} is an arithmetic Brownian motion. 

(ii) Var[X(t + h) − X(t)]  =  σ2 h,  t ≥ 0, h > 0. 

(iii) ∑
=∞→

−−
n

jn
nTjXnjTX

1

2)]/)1(()/([lim  =  σ2 T. 

 

A  Only (i) is true 

B  Only (ii) is true 

C  Only (i) and (ii) are true 

D  Only (i) and (iii) are true 

E  (i), (ii) and (iii) are true 
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 Solution to (10)   Answer: (E) 

 

(i) is true.  That {S(t)} is a geometric Brownian motion means exactly that its logarithm is 

an arithmetic Brownian motion.  (Also see the solution to problem (11).) 

 

(ii) is true.  Because {X(t)} is an arithmetic Brownian motion, the increment, X(t + h) − 

X(t), is a normal random variable with variance σ2 h.  This result can also be found at the 

bottom of page 605. 

 

(iii) is true.  Because X(t) = ln S(t), we have 

  X(t + h) − X(t)  =  μh  +  σ[Z(t + h) − Z(t)], 

where {Z(t)} is a (standard) Brownian motion and μ = α – δ − ½σ2.  (Here, we assume 

the stock price follows (20.25), but the actual value of μ is not important.)  Then,  

 [X(t + h) − X(t)]2  =  μ2h2  +  2μhσ[Z(t + h) − Z(t)]  +  σ2[Z(t + h) − Z(t)]2. 

With h = T/n, 

    ∑
=

−−
n

j
nTjXnjTX

1

2)]/)1(()/([  

    =  μ2T2/n + 2μ(T/n)σ[Z(T) − Z(0)] + σ2 ∑
=

−−
n

j
nTjZnjTZ

1

2)]/)1(()/([ . 

As n → ∞, the first two terms on the last line become 0, and the sum becomes T 

according to formula (20.6) on page 653. 

 

Remarks:  What is called “arithmetic Brownian motion” is the textbook is called 

“Brownian motion” by many other authors.  What is called “Brownian motion” is the 

textbook is called “standard Brownian motion” by others.   

Statement (iii) is a non-trivial result:  The limit of sums of stochastic terms turns 

out to be deterministic.  A consequence is that, if we can observe the prices of a stock 

over a time interval, no matter how short the interval is, we can determine the value of σ 

by evaluating the quadratic variation of the natural logarithm of the stock prices.  Of 

course, this is under the assumption that the stock price follows a geometric Brownian 
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motion.  This result is a reason why the true stock price process (20.25) and the risk-

neutral stock price process (20.26) must have the same σ.   A discussion on realized 

quadratic variation can be found on page 755 of McDonald (2006). 

A quick “proof” of the quadratic variation formula (20.6) can be obtained using 

the multiplication rule (20.17c).  The left-hand side of (20.6) can be seen as ∫
T

tdZ
0

2)]([ .  

Formula (20.17c) states that 2)]([ tdZ = dt.  Thus, 

   ∫
T

tdZ
0

2)]([  =  ∫
T

dt
0

 =  T. 
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(11)  Consider the Black-Scholes framework.  You are given the following three 
statements on variances, conditional on knowing S(t), the stock price at time t.  
 
 

(i) Var[ln S(t + h) | S(t)]  =  σ2 h,  h > 0. 

(ii) Var ⎥
⎦

⎤
⎢
⎣

⎡
)(

)(
)( tS

tS
tdS   =  σ2 dt 

(iii) Var[S(t + dt) | S(t)]  =  S(t)2 σ2 dt 

 

 

(A)   Only (i) is true 

(B)  Only (ii) is true 

(C)  Only (i) and (ii) are true 

(D)  Only (ii) and (iii) are true 

(E) (i), (ii) and (iii) are true 
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Here are some facts about geometric Brownian motion.  The solution of the stochastic 

differential equation 

  
)(
)(

tS
tdS   =  αdt  +  σdZ(t)     (20.1) 

is 

  S(t)  =  S(0) exp[(α – ½σ2)t  +  σZ(t)].   (*) 

Formula (*), which can be verified to satisfy (20.1) by using Itô’s Lemma, is equivalent 

to formula (20.29), which is the solution of the stochastic differential equation (20.25).  It 

follows from (*) that 

 S(t + h)  =  S(t) exp[(α – ½σ2)h  +  σ[Z(t + h) − Z(t)]],   h ≥ 0. (**) 

From page 650, we know that the random variable [Z(t + h) − Z(t)] has the same 

distribution as Z(h), i.e., it is normal with mean 0 and variance h.   

 

Solution to (11)    Answer: (E) 

(i) is true:  The logarithm of equation (**) shows that given the value of S(t), ln[S(t + h)] 

is a normal random variable with mean (ln[S(t)] + (α – ½σ2)h)  and variance σ2h.  See 

also the top paragraph on page 650 of McDonald (2006). 

 

(ii) is true:         Var ⎥
⎦

⎤
⎢
⎣

⎡
)(

)(
)( tS

tS
tdS  =  Var[αdt + σdZ(t)|S(t)] 

     =  Var[αdt + σdZ(t)|Z(t)], 

because it follows from (*) that knowing the value of S(t) is equivalent to knowing the 

value of Z(t).  Now,  

           Var[αdt + σdZ(t)|Z(t)] =  Var[σdZ(t)|Z(t)]  

     =  σ2 Var[dZ(t)|Z(t)] 

     =  σ2 Var[dZ(t)]     ∵   independent increments 

=  σ2 dt.  

Remark:  The unconditional variance also has the same answer: Var ⎥
⎦

⎤
⎢
⎣

⎡
)(
)(

tS
tdS  =  σ2 dt. 
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(iii) is true because (ii) is the same as 

Var[dS(t) | S(t)]  =  S(t)2 σ2 dt, 

and 

           Var[dS(t) | S(t)] =  Var[S(t + dt) − S(t) | S(t)]   

     =  Var[S(t + dt) | S(t)]. 
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(12)  Consider two nondividend-paying assets X and Y.  There is a single source of 
uncertainty which is captured by a standard Brownian motion {Z(t)}.  The prices of the 
assets satisfy the stochastic differential equations 
 

)(
)(

tX
tdX  = 0.07dt + 0.12dZ(t) 

and 

)(
)(

tY
tdY  = Adt + BdZ(t), 

where A and B are constants.  You are also given: 
 

(i)   d[ln Y(t)] = μdt + 0.085dZ(t); 
 

(ii)  The continuously compounded risk-free interest rate is 0.04. 
 
Determine A. 
 
(A) 0.0604 
(B) 0.0613 
(C) 0.0650 
(D) 0.0700 
(E) 0.0954 
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Solution to (12)  Answer: (B) 

 
If f(x) is a twice-differentiable function of one variable, then Itô’s Lemma (page 664) 

simplifies as 

  df(Y(t))  =  f ′(Y(t))dY(t)  +  ½ f ″(Y(t))[dY(t)]2, 

because )(xf
t∂

∂  = 0.   

 

If f(x) = ln x, then f ′(x) = 1/x and f ″(x) = −1/x2.  Hence, 

  d[ln Y(t)]  =  
)(

1
tY

dY(t) + 2
2 )](d[

)]([
1

2
1 tY

tY ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− .   (1) 

We are given that 

   dY(t)  =  Y(t)[Adt + BdZ(t)].     (2) 

Thus, 

  [dY(t)]2  =  {Y(t)[Adt + BdZ(t)]}2  =  [Y(t)]2 B2 dt,   (3) 

by applying the multiplication rules (20.17) on pages 658 and 659.  Substituting (2) and 

(3) in (1) and simplifying yields  

d [ln Y(t)] = (A −
2

2B )dt + BdZ(t).     

It thus follows from condition (i) that B = 0.085. 

 

It is pointed out in Section 20.4 that two assets having the same source of randomness 

must have the same Sharpe ratio.  Thus, 

(0.07 – 0.04)/0.12 = (A – 0.04)/B = (A – 0.04)/0.085 

Therefore, A = 0.04 + 0.085(0.25) = 0.06125 ≈ 0.0613 
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(13)  Let {Z(t)} be a Brownian motion. You are given: 
 

(i) U(t) = 2Z(t) − 2 

(ii) V(t) = [Z(t)]2 − t 

(iii) W(t) = t2 Z(t) − ∫
t

sssZ
0

d)(2  

 
Which of the processes defined above has / have zero drift? 
 
A. {V(t)} only 
B. {W(t)} only 
C. {U(t)} and {V(t)} only 
D. {V(t)} and {W(t)} only 
E. All three processes have zero drift. 
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Solution to (13)   Answer: (E) 

 

Apply Itô’s Lemma. 
 
 
 (i) dU(t)  =  2dZ(t) − 0  =  0dt  + 2dZ(t).   

Thus, the stochastic process {U(t)} has zero drift. 

 

(ii)  dV(t)  =  d[Z(t)]2  −  dt.   

          d[Z(t)]2  =  2Z(t)dZ(t)  +  
2
2 [dZ(t)]2 

  =  2Z(t)dZ(t)  +  dt 

by the multiplication rule (20.17c) on page 659.  Thus, 

dV(t)  =  2Z(t)dZ(t). 

The stochastic process {V(t)} has zero drift. 

 

(iii) dW(t) = d[t2 Z(t)] − 2t Z(t)dt  

Because 

d[t2 Z(t)] = t2dZ(t) + 2tZ(t)dt, 

we have 

 dW(t) = t2dZ(t). 

The process {W(t)} has zero drift. 
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(14)  You are using the Vasicek one-factor interest-rate model with the short-rate process 
calibrated as 

dr(t)  =  0.6[b − r(t)]dt  +  σdZ(t). 

For t ≤ T, let P(r, t, T ) be the price at time t of a zero-coupon bond that pays $1 at time T, 

if the short-rate at time t is r.  The price of each zero-coupon bond in the Vasicek model 

follows an Itô process, 

],),([
],),([

TttrP
TttrdP   =  α[r(t), t, T] dt  −  q[r(t), t, T] dZ(t),  t ≤ T. 

You are given that α(0.04, 0, 2) = 0.04139761. 

Find α(0.05, 1, 4).



34 5/20/2008 

Solution to (14) 

Because all bond prices are driven by a single source of uncertainties, {Z(t)}, the no-

arbitrage condition implies that the ratio, 
),,(

),,(
Ttrq

rTtr −α , does not depend on T.  See 

(24.16) on page 782 and (20.24) on page 660.  In the Vasicek model, the ratio is set to be 

φ, a constant.  Thus, we have 

   
)2 ,0 ,04.0(

04.0)2 ,0 ,04.0(
)4 ,1 ,05.0(

05.0)4 ,1 ,05.0(
qq

−α
=

−α .   (*) 

To finish the problem, we need to know q, which is the coefficient of dZ(t) in 

],),([
],),([

TttrP
TttrdP .  To evaluate the numerator, we apply Itô’s Lemma: 

       dP[r(t), t, T]  =  Pt[r(t), t, T]dt + Pr[r(t), t, T]dr(t) + ½Prr[r(t), t, T][dr(t)]2, 

which is a portion of (20.10).  Because dr(t)  =  a[b − r(t)]dt  +  σdZ(t), we have  

[dr(t)]2 = σ2dt, which has no dZ term.  Thus, we see that 

         q(r, t, T) =  −σPr(r, t, T)/P(r, t, T)       which is a special case of (24.12) 

=  −σ
r∂

∂ ln[P(r, t, T)]. 

In the Vasicek model and in the Cox-Ingersoll-Ross model, the zero-coupon bond price is 

of the form 

   P(r, t, T)  =  A(t, T) e−B(t, T)r; 

hence, 

   q(r, t, T)  =  −σ
r∂

∂ ln[P(r, t, T)]  =  σB(t, T). 

In fact, both A(t, T) and B(t, T) are functions of the time to maturity, T – t.  In the Vasicek 

model, B(t, T)  =  [1 − e−a(T− t)]/a.  Thus, equation (*) becomes 

   )02()14( 1
04.0)2 ,0 ,04.0(

1
05.0)4 ,1 ,05.0(

−−−− −

−α
=

−

−α
aa ee

. 

Because a = 0.6 and α(0.04, 0, 2) = 0.04139761, we get α(0.05, 1, 4) = 0.05167. 
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Remark 1:  The second equation in the problem is equation (24.1) [or (24.13)] of 
MacDonald (2006).  In its first printing, the minus sign on the right-hand side is a plus 
sign.  In the earlier version of this problem, we followed that convention. 
 
Remark 2:  Unfortunately, zero-coupon bond prices are denoted as P(r, t, T) and also as  
P(t, T, r) in McDonald (2006). 
 
Remark 3:  One can remember the formula, 

B(t, T)  =  [1 − e−a(T− t)]/a, 

in the Vasicek model as 
atTa

=δ− | , the present value of a continuous annuity-certain of 

rate 1, payable for T − t years, and evaluated at force of interest a, where a is the “speed 

of mean reversion” for the associated short-rate process.   

 
Remark 4:  If the zero coupon prices are of the so-called affine form, 
   P(r , t, T) = A(t, T) e−B(t, T)r , 
where A(t, T) and B(t, T) are independent of r, then (24.12) becomes 

q(r, t, T)  =  σ(r)B(t, T). 
Thus, (24.17) is 

φ(r, t) = 
),,(

),,(
Ttrq

rTtr −α   =  
),()(

),,(
TtBr

rTtr
σ

−α , 

from which we see that the instantaneous expected return of the zero-coupon bond is 
α(r, t, T)  =  r  +  φ(r, t)σ(r) B(t, T). 

In the Vasicek model, σ(r) = σ, φ(r, t) = φ,  and 
α(r, t, T)  =  r  +  φσB(t, T). 

In the CIR model, σ(r) = σ r , φ(r, t) = 
σ

φ r ,  and  

α(r, t, T)  =  r  +  ) ,( TtrBφ . 
 

In either model, A(t, T) and B(t, T) depend on the variables t and T by means of their 
difference T – t,  which is the time to maturity. 
 
Remark 4:  Formula (24.20) on page 783 of McDonald (2006) is   

  P(r, t, T)  =  E*[exp(− ∫
T
t

sr )( ds) | r(t) = r], 

where E* represents the expectation taken with respect to the risk-neutral probability 

measure.  Under the risk-neutral probability measure, the expected return of each asset is 

the risk-free interest rate.  Now, (24.13) is 
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],),([
],),([

TttrP
TttrdP  =  α[r(t), t, T] dt  −  q[r(t), t, T] dZ(t) 

= r(t) dt  −  q[r(t), t, T] dZ(t)  +  {α[r(t), t, T] − r(t)}dt 

= r(t) dt  −  q[r(t), t, T]{dZ(t)  −  
],),([

)(],),([
Tttrq

trTttr −α dt} 

=  r(t) dt  −  q[r(t), t, T]{dZ(t)  −  φ[r(t), t]dt}. (**) 

Let us define the stochastic process { )(~ tZ } by 

   )(~ tZ  =  Z(t)  −  ∫
t
0

φ[r(s), s]ds. 

Then, applying  

d )(~ tZ  =  dZ(t)  −  φ[r(t), t]dt      (***) 

to (**) yields 

  
],),([
],),([

TttrP
TttrdP  =  r(t)dt  −  q[r(t), t, T]d )(~ tZ , 

which is analogous to (20.26) on page 661.  The risk-neutral probability measure is such 

that { )(~ tZ } is a standard Brownian motion. 

 Applying (***) to equation (24.2) yields  

  dr(t) =   a[r(t)]dt + σ[r(t)]dZ(t) 

   =   a[r(t)]dt + σ[r(t)]{d )(~ tZ  +  φ[r(t), t]dt} 

   =   {a[r(t)]  +  σ[r(t)]φ[r(t), t]}dt  + σ[r(t)]d )(~ tZ , 

which is (24.19) on page 783 of McDonald (2006). 
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(15)  You are given the following incomplete Black-Derman-Toy interest rate tree model 
for the effective annual interest rates: 
 
 
 
 
 
 
 
 
 
 
  
 
  

 
  
 
 
 
Calculate the price of a year-4 caplet for the notional amount of $100.  The cap rate is 
10.5%.   
 

9% 

9.3% 

12.6% 

13.5% 

11% 

17.2% 

 

Year 0 Year 1 Year 2 Year 3 

16.8% 
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Solution to (15) 
  
First, let us fill in the three missing interest rates in the B-D-T binomial tree.  In terms of 
the notation in Figure 24.4 of McDonald (2006), the missing interest rates are rd, rddd, and 
rduu.  We can find these interest rates, because in each period, the interest rates in 
different states are terms of a geometric progression. 
 

%6.10
135.0
172.0135.0

=⇒= dd
dd

r
r

 

%6.13168.0
11.0

=⇒= ddu
ddu

ddu r
r

r  

%9.8
11.0

168.011.0
2

=⇒=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ddd

ddd
r

r
 

 
The payment of a year-4 caplet is made at year 4 (time 4), and we consider its discounted 
value at year 3 (time 3).  At year 3 (time 3), the binomial model has four nodes; at that 
time, a year-4 caplet has one of four values: 
 

,394.5
168.1

5.108.16
=

− ,729.2
136.1

5.106.13
=

−  ,450.0
11.1

5.1011
=

− and 0 because rddd  = 8.9% 

which is less than 10.5%.   
 
For the Black-Derman-Toy model, the risk-neutral probability for an up move is ½. 
We now calculate the caplet’s value in each of the three nodes at time 2: 
 

4654.3
172.1

2/)729.2394.5(
=

+ , 4004.1
135.1

2/)450.0729.2(
=

+ , 2034.0
106.1

2/)0450.0(
=

+ . 

 
Then, we calculate the caplet’s value in each of the two nodes at time 1: 
 

    1607.2
126.1

2/)4004.14654.3(
=

+ ,        7337.0
093.1

2/)2034.040044.1(
=

+ . 

Finally, the time-0 price of the year-4 caplet is  3277.1
09.1

2/)7337.01607.2(
=

+ . 

 

Remarks:  (1) The discussion on caps and caplets on page 805 of McDonald (2006) 

involves a loan.  This is not necessary.  (2) If your copy of McDonald was printed before 

2008, then you need to correct the typographical errors on page 805; see  

http://www.kellogg.northwestern.edu/faculty/mcdonald/htm/typos2e_01.html  (3) In the 
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earlier version of this problem, we mistakenly used the term “year-3 caplet” for “year-4 

caplet.” 

 

Alternative Solution   The payoff of the year-4 caplet is made at year 4 (at time 4).  In a 

binomial lattice, there are 16 paths from time 0 to time 4.   

For the uuuu path, the payoff is (16.8 – 10.5)+ 

For the uuud path, the payoff is also (16.8 – 10.5)+ 

For the uudu path, the payoff is (13.6 – 10.5)+ 

For the uudd path, the payoff is also (13.6 – 10.5)+ 

: 
: 
We discount these payoffs by the one-period interest rates (annual interest rates) along 

interest-rate paths, and then calculate their average with respect to the risk-neutral 

probabilities.  In the Black-Derman-Toy model, the risk-neutral probability for each 

interest-rate path is the same.  Thus, the time-0 price of the caplet is 

16
1 {

168.1172.1126.109.1
)5.108.16(

×××
− +  + 

168.1172.1126.109.1
)5.108.16(

×××
− +  

         + 
136.1172.1126.109.1

)5.106.13(
×××

− +  + 
136.1172.1126.109.1

)5.106.13(
×××

− +  + ……………… } 

= 
8
1 {

168.1172.1126.109.1
)5.108.16(

×××
− +    

+ 
136.1172.1126.109.1

)5.106.13(
×××

− +  +  
136.1135.1126.109.1

)5.106.13(
×××

− +  + 
136.1135.1093.109.1

)5.106.13(
×××

− +  

+ 
11.1135.1126.109.1

)5.1011(
×××

− +  + 
11.1135.1093.109.1

)5.1011(
×××

− +  + 
11.1106.1093.109.1

)5.1011(
×××

− +  

+  
09.1106.1093.109.1

)5.109(
×××

− + }   =  1.326829. 

 
Remark:  In this problem, the payoffs are path-independent.  The “backward induction” 

method in the earlier solution is more efficient.  However, if the payoffs are path-

dependent, then the price will need to be calculated by the “path-by-path” method 

illustrated in this alternative solution. 
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(16)  Assume that the Black-Scholes framework holds.  Let S(t) be the price of a 

nondividend-paying stock at time t, t ≥ 0.  The stock’s volatility is 20%, and the 

continuously compounded risk-free interest rate is 4%.   

 

You are interested in claims with payoff being the stock price raised to some power.   

For 0 ≤ t < T, consider the equation 

     P
T,tF [S(T)x] = S(t)x,   

where the left-hand side is the prepaid forward price at time t of a claim that pays S(T)x at 

time T.  A solution for the equation is x = 1.   

 

Determine another x that solves the equation. 

 
 

(A) −4 
(B) −2 
(C) −1 
(D) 2 
(E) 4 
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Solution to (16)  Answer (B) 
 
It follows from (20.30) in Proposition 20.3 that 
  P

T,tF [S(T)x]  =  S(t)x exp{[−r + x(r − δ) + ½x(x – 1)σ2](T – t)}, 
which equals S(t)x if and only if 
   −r + x(r − δ) + ½x(x – 1)σ2  =  0. 
This is a quadratic equation of x.  With δ = 0, the quadratic equation becomes 
          0 =  −r + xr + ½x(x – 1)σ2 
  =  (x – 1)(½σ2x + r). 
Thus, the solutions are 1 and −2r/σ2 = −2(4%)/(20%)2 = −2, which is (B). 
 
 
 
 
 
Remarks:  
(1) Three derivations for (20.30) can be found in Section 20.7 of McDonald (2006).  Here 
is a fourth.  Define Y = ln[S(T)/S(t)].  Then, 
    P

T,tF [S(T)x] = ∗
tE [e−r(T−t) S(T)x]    ∵  Prepaid forward price 

    = ∗
tE [e−r(T−t) (S(t)eY)x]   ∵  Definition of Y 

=  e−r(T−t) S(t)x ∗
tE [exY]. ∵  The value of S(t) is not  

          random at time t 
The problem is to find x such that e−r(T−t) ∗

tE [exY] = 1.  The expectation ∗
tE [exY] is the 

moment-generating function of the random variable Y at the value x.  Under the risk-
neutral probability measure, Y is normal with mean (r – δ – ½σ2)(T – t) and variance 
σ2(T – t).  Thus, by the moment-generating function formula for a normal r.v., 
  ∗

tE [exY]  =  exp[x(r – δ – ½σ2)(T – t)  +  ½x2σ2(T – t)], 
and the problem becomes finding x such that  

0 =  −r(T – t) + x(r – δ – ½σ2)(T – t) + ½x2σ2(T – t), 
which is the same quadratic equation as above. 

 

(2) Applying the quadratic formula, one finds that the two solutions of 
   −r + x(r − δ) + ½x(x – 1)σ2  =  0 
are x = h1 and x = h2 of Section 12.6 in McDonald (2006).  A reason for this 

“coincidence” is that x = h1 and x = h2 are the values for which the stochastic process 

{e−rt S(t)x} becomes a martingale.  Martingales are defined on page 651. 
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(17) You are to estimate a nondividend-paying stock’s annualized volatility using its 
prices in the past nine months.  
   
Month  Stock Price ($/share) 
1   80 
2   64 
3   80 
4   64 
5   80 
6   100 
7   80 
8   64 
9 80 
 
Calculate the historical volatility for this stock over the period. 

 
 
 
(A) 83% 

(B) 77% 

(C) 24% 

(D) 22% 

(E) 20%
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Solution to (17) Answer (A) 

This problem is based on Sections 11.3 and 11.4 of McDonald (2006), in particular, 
Table 11.1 on page 361.   
 
Let {rj} denote the continuously compounded monthly returns.  Thus, r1 = ln(80/64),  
r2 = ln(64/80), r3 = ln(80/64), r4 = ln(64/80), r5 = ln(80/100), r6 = ln(100/80),  
r7 = ln(80/64), and r8 = ln(64/80).  Note that four of them are ln(1.25) and the other four 
are –ln(1.25); in particular, their mean is zero. 
 
The (unbiased) sample variance of the non-annualized monthly returns is 

  ∑
=

−
−

n

j
j rr

n 1

2)(
1

1  = ∑
=

−
8

1

2)(
7
1

j
j rr = ∑

=

8

1

2)(
7
1

j
jr = 

7
8 [ln(1.25)]2. 

The annual standard deviation is related to the monthly standard deviation by formula 
(11.5), 

    σ  =  
h
hσ , 

where h = 1/12.  Thus, the historical volatility is 

   12 ×
7
8

×ln(1.25)  =  82.6%. 

 
 
Remarks: Further discussion is given in Section 23.2 of McDonald (2006).  (Chapter 23 
is not in the syllabus of Exam MFE/3F.)  Suppose that we observe n continuously 
compounded returns over the time period [τ, τ + T].  Then, h = T/n, and the historical 
annual variance of returns is estimated as 

  
h
1 ∑

=
−

−

n

j
j rr

n 1

2)(
1

1  =  
T
1 ∑

=
−

−

n

j
j rr

n
n

1

2)(
1

. 

Now,  

   r  = ∑
=

n

j
jr

n 1

1  = 
n
1

)(
)(ln

τ
+τ

S
TS , 

which is around zero when n is large.  Thus, a simpler estimation formula is 

h
1 ∑

=−

n

j
jr

n 1

2)(
1

1  which is formula (23.2) on page 744, or equivalently, 

T
1 ∑

=−

n

j
jr

n
n

1

2)(
1

which is the formula in footnote 9 on page 756.  The last formula is 

related to #10 in this set of sample problems:  With probability 1, 

  ∑
=∞→

−−
n

jn
nTjSnjTS

1

2)]/)1((ln)/([lnlim  =  σ2 T. 
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(18)  A market-maker sells 1,000 1-year European gap call options, and delta-hedges the 

position with shares.  You are given: 

(i)  Each gap call option is written on 1 share of a nondividend-paying stock. 

(ii) The current price of the stock is $100. 

(iii) The stock’s volatility is 100%.  

(iv) Each gap call option has a strike price of $130. 

(v) Each gap call option has a payment trigger of $100.  

(vi) The risk-free interest rate is 0%. 

Under the Black-Scholes framework, determine the initial number of shares in the delta-

hedge. 

 

(A) 586 

(B) 594 

(C) 684 

(D) 692 

(E) 797 
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Solution to (18)  Answer: (A)                  
 
Note that, in this problem, r = 0 and δ = 0. 
 
By formula (14.15), the time-0 price of the gap option is 

Cgap = SN(d1) − 130N(d2) = [SN(d1) − 100N(d2)] − 30N(d2) = C − 30N(d2), 
where d1 and d2 are calculated with K = 100 (and r = δ = 0), and C denotes the time-0 
price of the plain-vanilla call option with exercise price 100.  
 
In the Black-Scholes framework, delta of a derivative security of a stock is the partial 
derivative of the security price with respect to the stock price.  Thus, 

       Δgap  = 
S∂
∂ Cgap = 

S∂
∂ C − 30

S∂
∂ N(d2) = ΔC – 30N'(d2)

S∂
∂ d2 

= N(d1) – 30N'(d2)
TS

1
σ

, 

where N'(x) = 
π2

1 2/2xe−  is the density function of the standard normal. 

 
Now, with S = K = 100, T = 1, and σ = 1, 

d1 = [ln(S/K) + σ2T/2]/(σ√T) = (σ2T/2)/(σ√T) = ½σ√T = ½, 
and d2 = d1 − σ√T = −½.  Hence, 

       Δgap = N(d1) – 30N'(d2)
100

1  = N(½) – 0.3N'(−½) = N(½) – 0.3
π2

1 2/)½( 2
e −−  

  = 0.6915 – 0.3
π2

8825.0  = 0.6915 – 0.3×0.352 = 0.6915 – 0.1056 = 0.5859 

 
 
 
 
 

Remark: The formula of the standard normal density function, 2/2

2
1 xe−

π
, will be 

found in the Normal Table distributed to students. 
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(19) Consider a forward start option which, 1 year from today, will give its owner a 1-

year European call option with a strike price equal to the stock price at that time. 

 

You are given: 

(i) The European call option is on a stock that pays no dividends. 

(ii) The stock’s volatility is 30%.  

(iii) The forward price for delivery of 1 share of the stock 1 year from today is 

$100. 

(iv) The continuously compounded risk-free interest rate is 8%. 

 

Under the Black-Scholes framework, determine the price today of the forward start 

option. 

 
 
(A) $11.90 
 
(B) $13.10 
 
(C) $14.50 
 
(D) $15.70 
 
(E) $16.80 
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 Solution to (19):   Answer: C                 
 
This problem is based on Exercise 14.21 on page 465 of McDonald (2006). 
 
Let S1 denote the stock price at the end of one year.  Apply the Black-Scholes formula to 
calculate the price of the at-the-money call one year from today, conditioning on S1. 
 
d1 = [ln (S1/S1) + (r + σ2/2)T]/( σ√T)  = (r + σ2/2)/σ = 0.417, which turns out to be 
independent of S1. 
 
d2 = d1 − σ√T  = d1 − σ = 0.117 
 
The value of the forward start option at time 1 is 
  C(S1) = S1N(d1) − S1e−r N(d2) 
         = S1[N(0.417) −  e−0.08 N(0.117)] 
          ≈ S1[N(0.42) −  e−0.08 N(0.12)] 
 =  S1[0.6628  −  e-0.08×0.5438] 
           = 0.157S1. 
(Note that, when viewed from time 0, S1 is a random variable.)   
 
Thus, the time-0 price of the forward start option must be 0.157 multiplied by the time-0 
price of a security that gives S1 as payoff at time 1, i.e., multiplied by the prepaid forward 
price )(1,0 SF P .  Hence, the time-0 price of the forward start option is 

 0.157× )(1,0 SF P  = 0.157×e−0.08× )(1,0 SF  = 0.157×e−0.08×100 = 14.5 

 

 

Remark: A key to pricing the forward start option is that d1 and d2 turn out to be 

independent of the stock price.  This is the case if the strike price of the call option will 

be set as a fixed percentage of the stock price at the issue date of the call option.   
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(20)  Assume the Black-Scholes framework.  Consider a stock, and a European call 
option and a European put option on the stock.  The stock price, call price, and put 
price are 45.00, 4.45, and 1.90, respectively.   

 
 Investor A purchases two calls and one put.  Investor B purchases two calls and 

writes three puts. 
 
 

 The elasticity of Investor A’s portfolio is 5.0.  The delta of Investor B’s portfolio is 
 3.4.   
 
 

 Calculate the put option elasticity. 
 
 

 (A) –0.55  
 (B) –1.15  
 (C) –8.64   
 (D) –13.03    
 (E) –27.24 
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Solution to (20):   Answer: D   
Applying the formula   

    Δportfolio  =  
S∂
∂ portfolio value    

to Investor B’s portfolio yields 
     3.4  =  2ΔC – 3ΔP.     (1) 
 
Applying the elasticity formula 

 Ωportfolio  =  
Sln∂

∂ ln[portfolio value]  =   
 valueportfolio

S
×

S∂
∂ portfolio value 

to Investor A’s portfolio yields 

   5.0  =  
PC

S
+2

(2ΔC + ΔP)  =  
9.19.8

45
+

(2ΔC + ΔP), 

or 
    
     1.2  =  2ΔC + ΔP.     (2) 
 
Now,    (2) − (1)      ⇒    −2.2  =  4ΔP. 

Hence,  put option elasticity  =  ΩP  =  
P
S  ΔP  =  

4
2.2

9.1
45

−×   =  −13.03, which is (D). 

 
Remarks:  (i) Although not explicitly stated, you are asked to calculate the current 
option delta.  The quantities, delta and elasticity, are not independent of time. 
(ii) If the stock pays not dividends, and if the European call and put options have the 
same expiration date and strike price, then ΔC − ΔP  =  1.  In this problem, the put and call 
do not have the same expiration date and strike price, so this relationship does not hold. 
(iii) If your copy of McDonald was printed before 2008, then you need to replace the last 
paragraph of Section 12.3 on page 395 by 
http://www.kellogg.northwestern.edu/faculty/mcdonald/htm/erratum395.pdf 
The ni in the new paragraph corresponds to the ωi on page 389. 
(iv) The statement on page 395 in McDonald (2006) that “[t]he elasticity of a portfolio is 
the weighted average of the elasticities of the portfolio components” may remind 
students, who are familiar with fixed income mathematics, the concept of duration.  
Formula (3.5.8) on page 101 of Financial Economics: With Applications to Investments, 
Insurance and Pensions (edited by H.H. Panjer and published by The Actuarial 
Foundation in 1998) shows that the so-called Macaulay duration is an elasticity. 
(v) A cleaner explanation of some of the results on page 394 of McDonald (2006) can be 
found on page 687, which is not part of the syllabus for Exam MFE/3F. 
(vi) In the Black-Scholes framework, the hedge ratio or delta of a portfolio is the partial 
derivative of the portfolio price with respect to the stock price.  In other continuous-time 
frameworks (which are not in the syllabus of Exam MFE/3F), the hedge ratio may not be 
given by a derivative; for an example, see formula (10.5.7) on page 478 of Financial 
Economics: With Applications to Investments, Insurance and Pensions. 


