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Introduction

Definition
A loss reserve is a provision for an insurer’s liability for claims

A stochastic model uses random variables in a regression
framework

Notes

Claims reserves models presented here use GLM theory as
introduced in England, Verrall 2002
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Model Definition

Notations
Ci,j Incremental payments

wi,j Exposure
ri,j Incremental number of payments
Yi,j Normalized incremental payments

Yi,j =
Ci,j
wi,j
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Model Definition

Hypotheses
Ci,j is a compound Poisson-Gamma distribution

Frequency ∼ Poisson with mean ϑi,jwi,j and variance ϑi,jwi,j

Severity ∼ Gamma with mean τi,j and variance ντ2
i,j

Using the following parametrisation

p =
ν + 2
ν + 1

, p ∈ (1,2)

µ = ϑτ

φ =
ϑ1−pτ2−p

(2− p)
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Model Definition

Tweedie Model
Yi,j ∼ Tweedie(µi,j ,p, φ,wi,j)

µi,j = eXβ

E [Yi,j ] = µi,j , Var [Yi,j ] = φ
wi,j
µp

i,j
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Log-likelihood function

Tweedie Model

l =
∑
i,j

ri,j log

(
(wi,j/φ)ν+1yνi,j

(p − 1)ν(2− p)

)

− log
(
ri,j !Γ

(
ri,jν

)
yi,j
)

+
wi,j

φ

(
yi,j

µ1−p
i,j

1− p
−
µ2−p

i,j

2− p

)
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Parameters

FIGURE: Parameter main influence
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Parameter p

Tweedie Model
Can be estimated only when the number of payments is known

Otherwise, it’s supposed fixed and known
p and φ need both to be estimated at the same time
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Parameter φ

Optimizing φ using the likelihood principle

φ̂p =

−
∑

i,j wi,j

(
yi,j

µ
1−p
i,j

1−p −
µ

2−p
i,j

2−p

)
(1 + ν)

∑
i,j ri,j
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Parameter φ

FIGURE: Optimizing p using the likelihood principle for φ
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Parameter φ

Optimizing φ using the deviance principle

φ̂p =
∑
i,j

2
N −Q

(
yi,j

y1−p
i,j − µ1−p

i,j

1− p
−

y2−p
i,j − µ2−p

i,j

2− p

)
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Parameter φ

FIGURE: Optimizing p using the deviance principle for φ
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Parameter wi ,j

Note
The exposure has been incorporated in the begining, within the
initial hypothesis

Different ways of incorporating the exposure within the initial
hypothesis would lead to different models
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Frequency vs Severity
Compound Poisson Model

Y =
N∑

k=1

Xi

Case 1 Case 2 Case 3
E[N] 10 20 10

Var[N] 10 20 10
E[X] 10 10 20

Var[X] 100 100 400
E[Y] 100 200 200

Var[Y] 2000 4000 8000

TABLE: Mean and variance of total costs for various situations
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Frequency vs Severity

Typical situation in a long-tail business
Decreasing average frequency

Increasing average severity
Increasing variance in the severity
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Impact of the Distribution

FIGURE: Fitted curve for Normal, Poisson and Gamma models
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Dispersion Models

Model Definition
Yi,j ∼ Tweedie(µi,j ,p, φi,j ,wi,j)

µi,j = eXβ

E [Yi,j ] = µi,j , Var [Yi,j ] = φi,jµ
p
i,j

φi,j = eVγ
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Dispersion Models

Log-likelihood

l =
∑
i,j

ri,j log

(
(wi,j/φi,j)

ν+1yνi,j
(p − 1)ν(2− p)

)
− log

(
ri,j !Γ

(
ri,jν

)
yi,j
)

+
wi,j

φi,j

(
yi,j

µ1−p
i,j

1− p
−
µ2−p

i,j

2− p

)
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Dispersion Models

Notes
The p parameter is optimized at the same time as all other
parameters using implicitly the likelihood principle

Accident years do not have a significant impact on the dispersion
parameter
Due to lack of data in the last column, the model was build so that
the last two columns have the same dispersion parameter
Possibility to incorporate trends in the dispersion parameter by
using the Hoerl’s curve parametrisation
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Double GLMs

Algorithm
1 Start with the initial exposure and find the normalized incremental

payments

2 Find the deviance between fitted and observed values
3 Model the deviance
4 Establish the new exposure and start over
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Double GLMs

FIGURE: Inter-relationship between the two sub-models
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Iterative Weighted Least Squares

Algorithm additional specifications
Analogous to Fisher’s weighted scoring method for optimization

IWLS implicitly uses the deviance principle for estimating φ
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Restricted Maximum Likelihood

Notes
Maximum likelihood estimators are biased downwards when the
number of estimators is large compared to the number of
observations

REML produces estimators which are approximately and
sometimes exactly unbiased
Approximately maximizes the penalized log-likelihood

l ∗p (y ; γ; p) = l(y ;βγ ; γ; p) +
1
2

log
∣∣∣X T WX

∣∣∣
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Optimizing p

Algorithm
1 Suppose p fixed and known

2 Evaluate all the other parameters using the DGLM
3 Evaluate the penalized log-likelihood
4 Start over with different values for p and compare the penalized

log-likelihood
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Reserve Variability

Mean Square Error of Prediction
Dispersion Models : overdispersion included implicitly in the
parameter covariance matrix

GLMs : overdispersion is included manually in the parameter
covariance matrix
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Data Analyzed
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Data Analyzed
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Data Analyzed
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Optimizing p

FIGURE: Restricted log-likelihood for various p in a DGLM
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Analysis of Results
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Analysis of Results
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Analysis of Results

FIGURE: Adjusting the most deviant observations has a bigger influence on
the deviance principle
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Analysis of Results

FIGURE: Contribution of each cell to the dispersion. p = 1.1741 , wi,j ≡ 1
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Conclusion

Further Discussion
Lack of observations and abundance of parameters is a hostile
environment for DGLMs

The deviance cannot be estimated in the last column for a DGLM
and is hence ignored when estimating φ
The algorithm does not converge for p fixed when there are more
than 7 parameters
The algorithm does converge for p fixed for one parameter, but p
cannot be optimized
The "bounds" of convergence need to be explored further
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The end
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