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Abstract 
 

In this paper we are concerned with the situation that occurs in claims reserving when 
there are negative values in the development triangle of incremental claim amounts. 
Typically, these negative values will be the result of salvage recoveries, payments from 
third parties, total or partial cancellation of outstanding claims, due to initial over-
estimation of the loss or to possible favorable jury decision in favor of the insurer, 
rejection by the insurer, or just plain errors. Some of the traditional methods of claims 
reserving, such as the chain-ladder technique, may produce estimates of the reserves even 
when there are negative values. However, many methods can break down in the presence 
of  enough (in number and/or size) negative incremental claims if certain constraints are 
not met. Historically the chain-ladder method has been used as a gold standard 
(benchmark), due to its generalized use and ease of application. A method that improves 
on the gold standard is one that can handle situations where there are many negative 
incremental claims and/or some of these are large. We present a Bayesian model to 
consider negative incremental values, based on a three parameter log-normal distribution. 
The model presented here allows the actuary to provide point estimates and measures of 
dispersion, as well as the complete distribution for outstanding claims from which the 
reserves can be derived. We apply MCMC using the package WinBUGS. 
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1. INTRODUCTION 
 
 The estimation of adequate reserves for outstanding claims is one of the main activities 
of actuaries in property/casualty insurance. The need to estimate future claims has led to 
the development of many loss reserving techniques. Probably the oldest and most widely 
used of these techniques is the well known chain-ladder. It is frequently used as a 
benchmark, due to its generalized use and ease of application, Hess and Schmidt (2002).  
In its original form the chain-ladder is a non-stochastic algorithm for producing estimates 
of outstanding claims. There are many variations of the method and we now provide a 
description of one them which will be useful  in what follows.  

We assume that the time (number of periods) it takes for the claims to be completely paid 
is fixed and known, that payments are made annually and that the development of partial 
payments follows a stable pay-off pattern. This is in agreement with many existing 
models for claims reserving in non-life (general) insurance that assume, explicitly or 
implicitly, that the proportion of claim payments, payable in the j-th development period, 
is the same for all periods of origin, de Alba (2002b),  Hess and Schmidt (2002). The 
results are applicable to any frequency of claim payments (years, quarters, etc.) and 
length of pay-off' period.  

We use the term claims reserving in its most general sense. Essentially the data would 
correspond to a typical run-off triangle used in loss reserving.  In this paper we use 
following notation, let  = incremental amount of claims in the titZ th development year 
corresponding to year of origin (or accident year) i. Thus { }s,...,t,k,...,i;Zit 11 ==  where 
s = maximum number of years (sub periods) it takes to completely pay out the total 
number (or amount) of claims corresponding to a given exposure year. In this paper we 
do not assume  for all i = 1,…,k  and t = 1,…,s. Most claims reserving methods 
usually assume that s=k and that we know the values for

0>itZ
 itZ 1+≤+ kti . The known 

values are presented in the form of a run-off triangle, Table 1. 
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Table 1: Typical development triangle used in general insurance claims reserving. 

Year of     Development Year   
origin 1 2 ...... t ... k-1 k 

1 Z11 Z12 ... Z1t  Z1,k-1 Z1k 
2 Z21 Z22 ... Z2t  Z2,k-1 - 
3 Z31 Z32 ... Z3t  -  
:      - - 

k-1 Zk-1,1 Zk-1,2    - - 
k Zk1 -     - 

 

Although the models described in this paper can be applied to more general shapes of 
claims data, other than a triangle, we assume that we have a conventional triangle of data. 
Thus, for ease of comparability with other methods, and without loss of generality,  
assume that the data consists of a triangle of incremental claims: 

. },;,,:{ kiiktZit KK 11-1 =+=

The cumulative claims are defined by   W ,   i=1,2,...,k  and the development 

factors of the chain-ladder technique are denoted by 

∑
j

1t
itij Z

=
=

},,:{ k2jj K=λ . The estimates of 
the development factors from the standard chain-ladder technique are 
 

                                         
∑

∑

-

-

-

1jk

1i
1ji

1jk

1i
ij

j

W

W

+

=

+

==

,

λ̂ ,    (1) 

see  Verrall (1989). These estimates are then applied to the latest cumulative claims 
available in each row (W ) to produce forecasts of future values of cumulative 
claims: 

1- +iki,

 
                          W 2ik1iki2iki W +++ = --- λ̂ˆ ,,    i k2 ,,K= ,                     (2) 

and 
           W j1jiji W λ̂ˆˆ ,, −= , i k3 ,,K= ,   k3ikj ,,K+−= .                (3) 

The required reserve for the ith accident year  will then be  1ikiii WWR +−= -,ˆˆ , and the 

total reserve is .  ∑=
=

k

2i
iRR ˆˆ

 
Note that the estimators of the development-factors can be written as  
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is the rate of change of the cumulative claims between the development years (j-1) and  j . 
Hence we can see that if the numerator is negative and the denominator positive we will 
have    and so  0rj < 1j <λ̂ . Furthermore, in the literature on the chain-ladder method, 
in general it is  implicitly assumed that 0j >λ̂

r
. Clearly,  formulas (1) through (5)  can be 

applied no matter what values we get  for  and j jλ̂

ji

. However in some cases  the 
resulting estimated reserves may be meaningless. Now, the numerator in (5)  will be 
negative if there are enough (in size and/or number) 0Z <,   in the jth  column. 
 
Negative incremental values can arise in the run-off triangle as a result of salvage 
recoveries, payments from third parties, total or partial cancellation of outstanding 
claims, due to initial over-estimation of the loss or to possible favorable jury decision in 
favor of the insurer, rejection by the insurer, or just plain errors.  England and Verrall 
(2002), argue that it is probably better to use, paid claims rather than  incurred claims 
(paid losses and aggregate case reserve estimates combined) since negative values are 
less likely to appear in the former. That is because case reserve estimates, the amount set 
aside by the claims handlers (see Chamberlain (1989), or Brown and Gottlieb (2001)) are 
set individually and often tend to be conservative, resulting in over-estimation in the 
aggregate. Adjusting for this overestimation  in the later stages of development may lead 
to negative incremental amounts.  Whatever their cause, the presence of these negative 
incremental values in the data may cause problems when applying some claims reserving 
methods. Thus  ideally, before applying claims reserving methods, the actuary will revise 
and correct the data in order to eliminate negative incremental values. In this respect de 
Alba and Bonilla (2002) provide a list of potential adjustments frequently used in 
practice.  However, even after correcting the data  it is not always possible to eliminate 
all the negative values. Hence it is convenient to have available claims reserving methods 
that will allow him/her to compute the necessary reserves even in the presence of the 
negative values that may remain in the data. 

The assumption W 1ik1jk1i0ji +−==> ,...,;,...,,,   is implicit in most discussions of 
the chain-ladder and is sometimes made explicit, Hess and Schmidt (2002), Mack (2004).  
Under this assumption, the estimates of the development factors will be acceptable even 
if the sum of  the known incremental claims of  the jth column is negative,  

i.e. , for some j’s.  Thus this method can be applied in the presence of 0Z
1jk

1i
ji <

+

=
∑
-

,
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negative incremental claim values. The consequence of which will be to have 1j <λ̂  for 
one or more  j’s. Other methods are not so ‘resistant’ and may even break down. In this 
paper we propose a stochastic model that will yield optimal Bayesian estimates of the 
reserves for outstanding claims.   In particular we are concerned with the situation when 
there are many negative incremental claims in the development triangle and/or some of 
these are large. 

The remaining of the paper is structured as follows. Section 2 presents stochastic claims 
reserving models, Bayesian and non-Bayesian, that can  be applied when there are 
negative claim values Section 3 describes a Bayesian model for claim amounts in the 
presence of negative values. Section 4 describes the prior distributions used in the model. 
In Section 5 we describe how to use our model to estimate reserves. Its implementation 
for Markov chain Monte Carlo, as well as an example, is given in Section 6. All models 
are presented only in discrete time. 

2. STOCHASTIC MODELS 
 
Stochastic models to claims reserving improve on the classical approach by allowing the 
actuary to obtain measures of uncertainty and sometimes the complete distribution of 
outstanding claims. For a comprehensive, although not exhaustive, review of existing 
stochastic methods for claims reserving see England and Verrall (2002), or Hess and 
Schmidt (2002). Most of the methods presented in these references use the point of view 
of frequentist or classical statistics. Hess and Schmidt (2002) concentrate on stochastic 
models for the chain-ladder.  

Mack (1993) presents one of the earliest attempts at formalizing a stochastic model for 
claims reserving. He proposes a nonparametric model that reproduces the chain-ladder 
and obtains distribution-free expressions for the standard of reserve estimates. The use of 
the model is not limited by the existence of negative incremental claims. What may be 
considered a limitation is that it is directed at reproducing the chain-ladder reserves. 
England and Verrall (1999)  have proposed the use of bootstraping to compute the 
prediction errors. 

England and Verrall (2002) emphasize the framework of generalized linear models 
(GLM), Anderson et al. (2004).  They provide predictions and prediction errors for the 
different methods discussed and show how the predictive distributions may be obtained 
by bootstrapping and Monte Carlo methods. Among the models considered by England 
and Verrall (2002) there are several that can handle negative values: an (over-dispersed) 
Poisson, a negative binomial and a Normal approximation to the negative binomial. They 
also mention the log-Normal model which was introduced by Kremer (1982) and 
analyzed in detail in Verrall (1991) when there are some negative incremental claims.  

In the context of generalized linear models (GLM) the first stochastic version of the 
chain-ladder method that can be applied in the presence of negative incremental claim 
values is defined as a generalized linear model with an over-dispersed Poisson 
distribution, Renshaw and Verrall (1998). In the over-dispersed Poisson model the mean 
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and variance are not the same. Using our previous notation itit mZE =)( , with  variance 
function itit mZV φ=)(  and scale parameter 0>φ , combined with the  function  

tiitm βαµ ++=)log( , where ti βα and  represent row and column effects in the 
triangle, respectively. Over-dispersion is achieved if φ > 1 . The model reproduces the 
estimates of the classical chain-ladder method. Estimates of the parameters, , are 
obtained by using a ‘quasi-likelihood’ approach, Anderson et al. (2004).  Renshaw and 
Verrall (1998) point out that their procedure “is not applicable to all sets of data, and can 
break down in the presence of a sufficient number of negative incremental claims.”  
Sufficient  means that there are enough incremental claims and their values are such that 

they make  , for some j = 1,…, k. Note that this is the condition for  

ti βαµ ˆ,ˆ,ˆ

j0Z
1jk

1i
ij <

+

=
∑
-

1<λ̂

0Z
1jk

1i
ij >

+

=
∑
-

 in 

the chain-ladder, see equation (4).  They then point out that for the method not to break 

down it is necessary to have some ‘positivity’ constraints, essentially that   for 

all j = 1,…,k, Verrall (2000). They discuss the relationship between this model and the 
chain-ladder technique, and show that, under the ‘positivity’ constraints, the same reserve 
estimates are produced by both methods. 

The negative binomial model is closely related to the Poisson model, Verrall (2000). The 
distribution in the GLM is now assumed to be a negative binomial with mean  

11 −− j,ij W)(λ  and variance 11 −− j,ijj W)(λφλ  , where W . The parameters  ∑=
=

j

1t
itij Z

}n,...,j:{ j 2=λ  are the typical chain-ladder development factors defined in Section 1. 
As in the Poisson model, φ  is an over-dispersion parameter. This  model yields 
essentially the same estimates as the (over-dispersed) Poisson. Again, with  enough 
negative incremental claims, it is possible that some of the λ’s (one would be enough) 
become less than one and so that clearly the variance would not exist and the model can 
not be applied.  

A third stochastic model for the chain-ladder, mentioned in England and Verrall (2002) 
that can be applied in the presence of negative incremental claim values is a Normal 
approximation to the negative binomial model, under which the chain-ladder results can 
still be reproduced. The approximation assumes the distribution of incremental claims is 
Normal with mean ( 11 −− j,ij W)λ , as in the negative binomial model, but the variance is 
assumed to be 1−j,ijWφ . This model is seen to be equivalent to one proposed by Mack 
(1993). In the Normal distribution there is no problem with negative incremental values. 
However, it is not recommended to use the Normal approximation in all situations, 
mainly because real claims data are known to be skewed. 

The estimate of the variance for the reserves under  the Normal approximation can not be 
obtained from the standard output from statistical packages and must be ‘constructed’ 
from part of the computer output and formulas,  England and Verrall (2002), which is not 
immediate. The computation process would require summing terms that involve all the 
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covariances between the parameters and these are not readily available from the statistical 
packages.    
 
We do not intend to give here an extensive review of the application of Bayesian methods 
in actuarial science. For general discussion on Bayesian theory and methods see Berger 
(1985), Bernardo and Smith (1994) or Zellner (1971a).   

Bayesian analysis of IBNR reserves has been considered by Jewell (1989,1990), Verrall 
(1990) and Haastrup and Arjas (1996). See  de Alba (2004) for a review. For a discussion 
of Bayesian methods in actuarial science see Klugman (1992), Makov (1996, 2001),  
Scollnik (2001, 2002), Ntzoufras and Dellaportas (2002), de Alba (2002b, 2004) and 
Verrall (2004). Kunkler (2004) provides a Bayesian claims reserving method for the 
situation when there are zeros in the development triangle, but not negative incremental 
claim values.  

We now refer to one existing Bayesian model, that can be applied to situations where 
 for some  i,t = 1,…,k. Verrall (2004) presents a Bayesian formulation of the 

Bornhuetter-Ferguson (B-F) technique. The Bornhuetter-Ferguson is a variant of the 
chain-ladder that uses external information to obtain an initial estimate for the amount of 
expected ultimate claims, W  for each i = 2,…,k. This is then combined with the 
development factors of the chain-ladder technique to estimate outstanding claims, Brown 
and Gottlieb (2001), Chamberlain (1989). This is clearly well suited for the application of 
Bayesian methods if the initial information about ultimate claims is given in terms of a 
prior distribution, Verrall (2004). However,  the author points out that the method may 
break down in the presence of enough negative values (in number and/or size), certainly 
if any column sum of the incremental claims in the development triangle is negative, i.e. 

again  if . 

0<itZ

ik

0Z
1jk

1i
it <

+

=
∑
-

We have seen that there are a number of stochastic claims reserving methods that may 
work in the presence on negative incremental claims, but that they will break down if 
enough negative values are present. In the next section we propose a Bayesian model that 
can be applied under very general conditions. 

 

3. A BAYESIAN MODEL FOR AGGREGATE CLAIMS  
 
 
In this section we present a model for the unobserved aggregate claim amounts and hence 
the necessary reserves for outstanding claims. We follow the approach set out in de Alba 
(2002a) where use is made of the three parameter log-normal distribution to estimate 
outstanding claims reserves in the presence of negative incremental claims. Let the 
random variable  represent the value of incremental claims amounts in the  titZ th 

development year of accident year  i, i,t=1,...,k. The  are known for i+t ≤ k+1  and we itZ
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let  

                                           Y ,                                                  (6) )log( δ+= itit Z

where δ is called the ‘threshold’ parameter. If Y ∼ N(µ,σit
2) then  has a three parameter 

log-normal distribution and its density is  
itZ

   ),|( 2σµzf it
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In our claims reserving problem the threshold parameter δ > 0 adjusts the negative 
incremental claim values so as to assure  for i,t=1,...,k,  with i+t ≤ k+1.  We 
assume in addition that 

,0)( >+δitz

    Y                              (7) ),(~)log( 2
ijijtiitit 0NZ σεεβαµδ +++=+=

i=1,...,k,   t=1,...,k  and i+t ≤ k+1 so that  follows a three parameter log-normal 
distribution,  denoted by  with 

itZ
),,(~ 2 δσµ itit LNZ tiit βαµµ ++=  and 

),,,,|( 2 δσβαµ tiitzf   ].))(log(exp[
)(

2
tiit2

it
z

2
1

2z
1 βαµδ

σπδσ
−−−+−

+
=    (8) 

The iα  and the tβ , , represent the accident year (row) and development year 
(column) effects, respectively. The model in (7) corresponds to an unbalanced  two-way 
analysis of variance (ANOVA) model. It is well known in ANOVA that certain 
restrictions must be imposed on the parameters in order to attain estimability in (3). We 
use the assumption that 

k1ti ,...,, =

11 0=β=α , Verrall (1990).  

Let  },,...,,;{ 1ktik1tizit +≤+==z

itZ log( =it

 be a T -dimension vector that contains all the 
observed  values of , whereY , and 

U

)δ+itZ )',...,,,...,,( k2k2 ββααµ=θ  is the 
 vector of parameters. The likelihood function will be 

, where the product is over the T  known  values, 
. 

)) 11 ×−

∏= ),,|(),, δσδσ 2
it

2 zf θθ
1,,...,1 +≤+ ktik

k(( 2
|(f z

, =ti
U itz

In de Alba (2002a) the threshold parameter δ is first estimated by Maximum Likelihood, 
“plugged in” to define , and then  the ‘profile’ likelihood,  

, is obtained. This is the likelihood function with 

)ˆlog( δ+= zy itit

)δ̂,,|()ˆ,|,( σδσ 22 fL θzzθ = δ  
replaced by its ML estimator, say δ̂ , Crow and Shimizu (1988, page 123). So the profile 
likelihood is used instead of the likelihood  to carry out the 
Bayesian analysis, which then  is done using results for a two parameter lognormal 
distribution, Zellner (1971b). The approach followed in de Alba (2002a) has the 

),,|()|,, δσδσ 22 f θzz =(L θ
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disadvantage that the variability due to estimating δ  is not taken into account in the 
inference process. This can be potentially troublesome since it is well known that the 
estimates of   δ   can be very unstable, see Cohen and Whitten (1980),  Johnson et al. 
(1994, chapter 14) and Hill (1963).  Here we use the full likelihood function 

. )|,,( zθ δσ 2L

,θ

,( σf 2θ

t

σ 2

),δ

σµ,

)α i

β iα

][)
t

(δ

| z,,( δσf 2θ

To carry out the Bayesian analysis we must now specify prior distributions for the 
parameters . We will assume prior independence so that  δand

)()()](][([)()()()( δσβµδσ ffffffff 2k

2t
t

k

2i

2 ××∏∏×==
==

θ . 

This assumption can be justified by considering that, a priori,  we have no reason to 
believe that  are influenced  by the effects of the development years 
(the

δand2

) or by those of the accident years ( the ), and  vice versa, i.e. they are 
statistically independent. Furthermore we can assume, a priori, that the effects of the 
development years (the tβ ) are not  influenced by those of the accident years (the iα ), 
and  vice versa. So  the iα  can be assumed independent of  the tβ . A standard assumption 
in claims reserving models is that accident years are independent, so this justifies the 
assumption of prior mutual independence of the iα . Even if there is some dependence 
among the parameters, as may be the case with the development year effects (the tβ ), and 
it is not modeled explicitly a priori so initially we assume they are independent,  it will be 
reflected in the posterior distribution since it will be introduced by the sample data 
through the likelihood function. Of course it is possible to consider other prior models 
that include explicitly potential dependencies, if there is enough prior information to 
specify them. We will assume independence to simplify the exposition. 

The posterior distribution will be obtained from  

)()()](([)(),,|() δσβαµδσ ffffff 2k

2
t

k

2i
i

2 ××∏∏××∝
==

θz .  (9) 

We will use a hierarchical model in the following sections. In hierarchical models, at a 
first stage  the data is specified to come from a given distribution,  
in our case. At the second stage, the parameters are assumed to follow their own (prior) 
distributions, here ,  i,t = 2,…,k.  We will then use 
Markov chain Monte Carlo (MCMC) simulation to generate samples  from the posterior 
distributions of the parameters as well as the predictive distribution of the reserves. This 
can be implemented with the package WinBUGS 1.4 (Spiegelhalter et al., 2001) or 
OpenBUGS (at http://mathstat.helsinki.fi/openbugs/). In the next section we describe the 
specification of the prior distributions. 

),,,,|( 2 δσβαµ tiitzf

)and)(),(),(),( 2σβαµ fffff ti
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4.  PRIOR DISTRIBUTIONS 
 
Specification of a prior distribution can be made by using any distribution that is 
reasonable according to the characteristics of the parameter.  When there is no agreement 
on the prior information, or even when there is a total lack of it, we can use what are 
known as non-informative or reference priors; i.e. the prior distribution )(θπ  will be 
chosen to reflect our state of ignorance. Inference under these circumstances is known as 
objective Bayesian inference. Here, for most of the parameters, we specify what are 
known as natural conjugate prior distributions. They have the property that the prior and 
posterior distributions belong to the same family of distributions, Bernardo and Smith 
(1994). They are easy to use because they lead to well known posterior distributions. 
Conjugate priors can also be specified so as to reflect lack of information, by assigning 
specific values to the parameters. In addition, most of the more common conjugate 
distributions are included in WinBUGS. 
 
Given , then a natural conditionally-conjugate prior for µ in the model 

(3) will be  Analogously, the natural conjugate priors for 

δσβα and,, 2
ti

,(~ 0 σµµ N ).2
0 ti βα and  are 

and , respectively. The values of the parameters in 

these distributions must be specified or else they must be assumed to follow a 
distribution. We will do the latter specifying a distribution that reflects little or no 
information, Zellner (1971a). This is easily done in WinBUGS, Scollnik (2001). 

),( 2
ii

N αα σµ~iα ),( 2
tt

N ββ σµ~tβ

 
Now, given δβαµ and,, ti  the conjugate prior distribution for  will be an inverse 
gamma distribution,  

2σ

 

                    ,0},/exp{)(
)(

)( 22)1(22 >−
Γ

= +− σσλσλσ v
v

v
f          

 
Bernardo and Smith (1994), denoted by . Again, we will assume (),(~ λνσ GI2 ),λν  
follow distributions that reflect little knowledge about them.  Finally we must specify the 
prior distribution for the threshold parameter δ, given the rest of the parameters, 

. We do not have a natural conjugate prior in this case. Here we specify 

a Normal prior distribution . 

2and,, σβαµ ti

)2,(~ N δδ σµδ
 

 
5. ESTIMATING THE RESERVES 
 
We want to estimate (or obtain the distribution of) aggregate claims for the ith accident 
year, i = 2,…,k,  given the information available in the development triangle. Recall that 
the cumulative claims are given by W  for 1 ≤ j ≤ k. Hence, in the run-off 

triangle setup, we are really interested in estimating W  i=2,...,k, given , i=1,...,k 
it

j
1tij Z=∑=

ik itZ
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t=1,...,k, with i+t ≤ k+1. Now let , for i=2,...,k  where W  is the 

accumulation of  up to the latest development period and R

1ikiiki WWR +−−= , 1iki +−,

∑=
=

k

2i
R

itZ i = the total aggregate 
outstanding claims corresponding to business year i, for i=2,...,k.   From the distribution 
of Ri  we can obtain the required reserves corresponding to this business year by choosing 
the measure of central tendency or quantile we want in the distribution of outstanding 

claims. Finally, from the distribution of  total aggregate outstanding claims  we 

can compute the required total reserves.  

iR

z

σδσ fz 22
it θθ ,(),,|

iwithk1t
f (

= ,,...,
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i

)j(R

+1
itZE )|( z

(f
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N

RandR 2 1)
R
2σ

In the Bayesian approach, when interest is on prediction, as in loss reserving, the past 
(known) data in the upper triangle, , are used to predict the observations in the lower 
triangle  by means of the posterior predictive distribution for outstanding claims in each 
cell: 

δσδ dddfz 2
it ∫= θzz )|,()|

1ktk1i
,   

+>+= ,,..., . 

The reserves for the outstanding aggregate claims  are estimated as the mean of the 
predictive distribution. Hence for each cell we must obtain . Then the Bayesian 

estimate of the total outstanding claims for year of business i is . The 

Bayesian ‘estimator’ of the variance of outstanding claims (the predictive variance) for 
that same year is too cumbersome to derive analytically. One alternative would be to use 
direct simulation from the posterior distributions to generate a set of N randomly 
generated values for the parameters from (9) and then in turn use the resulting values of 
the parameters in  to generate random values of . This yields random 
observations for aggregate  claims in each cell of the (unobserved) lower right triangle 

, ,  t , for j=1,…,N, de Alba (2002b).  The resulting values will 
include both parameter variability and process variability.  Thus we can compute a 
random value of the total outstanding claims . The mean and variance can 

be computed as 

)|( zitZE

itZ

)

∑
−> ikt

),,| δσ 2
itz θ

1+−> ik)( j
itz k,..,i 2=
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j(
itZ

                             −
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1 1

)(
)(( . 

The standard deviation  thus obtained is an ‘estimate’ for the prediction error of the 
claims to be paid. The simulation process has the added advantage that it is not necessary 
to obtain explicitly the covariances that may exist between parameters. They are dealt 
with implicitly. However, direct simulation may be very cumbersome to do, if not 
impossible, when the posterior distribution is not of a known type. It is for this kind of 
situation where MCMC proves very useful. The MCMC methodology has the added 
advantage that it is possible to obtain the mean, variance and any quantiles for the 

Rσ
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predictive distribution of the outstanding claims directly. We illustrate this in the next 
section with an application. 
 
 
6. APPLICATION 
 
In this section we present a set of data that contains many negative values. Table 2 
presents the data which was provided by Prof. R. L. Brown and was kindly made 
available by an (anonymous) American insurance company.  
 
 
 
 

1 2 3 4 5 6 7 8
1 33250.717 2097.059 78.897 21.117 -18.65 -0.121 -5.072 -1.292 -0.78
2 36717.578 2583.632 -34.240 19.080 10.120 -3.699 -2.492 1.259
3 38155.786 2705.212 38.503 -0.247 6.442 -6.669 -9.525
4 36180.233 2601.743 21.501 -8.662 -6.250 12.87
5 35980.821 2892.427 52.478 10.982 -3.496
6 37518.185 2901.650 -23.61 -39.496
7 40213.152 3006.438 -14.59
8 39105.807 3080.126
9 41184.755

Table 2: General insurance paid claims from an anonymous insurance company

9

 
 
 
 
 
 
 
 
 
 
 
 
 
We compare the results of applying the chain-ladder method; the Normal approximation;  
the Bayesian method using a ‘profile’ likelihood with δ replaced with its ML estimate, 
mentioned in Section 3; and our Bayesian model presented above with MCMC 
simulation.  
 
When applying MCMC the parameters in the third stage were chosen to reflect lack of 
information. Those for are specified as in Spiegelhalter et al. (2003) 
and Verrall (2004). The priors for 

2222
ti δβαµ σσσσ and,

λν and  are specified so that the prior expected value 
of corresponds approximately to the value that results when applying OLS to the data 
after correcting by adding the MLE of 

2σ
δ , , as in de Alba (2002a). Finally, the 

distribution for 
2.300ˆ =δ

δ  was set so that  a priori δ  has a large variance and hence it allows the 
random values generated in the MCMC simulation to cover a broad range. Its prior 
expected value is chosen to be between  zero  and its MLE .  δ̂
 
We used an initial burn-in sample of 10000 iterations. Two parallel chains were 
generated, each one with a burn in sample of 5000. The results of these observations were 
discarded, to remove any effect from the initial conditions and allow the simulations to 
converge. We also examined the results using a number of different initial conditions to 
ensure that these had no effect on the results. We then ran a further 50000 simulations for 
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each of the two chains, and then ‘thinned out’ to one out of ten observations to reduce 
autocorrelations and obtained the results shown below. Various checks were made of the 
convergence of the Markov chain using BOA, Smith (2005), as well as visual inspection 
of the sampled values.  
 

Table 3. MCMC estimates of  parameters for the log-normal distribution 
Percentiles Parameter Mean Std. Dev. 

2.50% Median 97.50% 
δ 106.40 17.15 81.56 101.20 155.40
µ 10.53 0.0719 10.39 10.53 10.67

τ=1/σ2 26.41 10.57 11.80 24.43 54.62
 
We obtain some characteristics of the posterior distribution of the parameters and, µδ  
the precision . The  results are shown in Table 3. The posterior mean of  δ is 
106.4 while its MLE is . Notice that the MLE is  out on the right tail of the 
posterior distribution, and beyond the 97.5% quantile. Thus if we had this information 
before trying to apply the Bayesian method with the profile likelihood, this would be a 

very un likely value to use to ‘plug in’. Other options for the prior distribution of δ  and 
this was always the case. 

21 στ /=
2.300ˆ =δ

Table 4. Estimation of reserves by accident year using different methods: the chain-ladder; the GLM 
with a normal approximation and quasi-likelihood estimation; the Bayesian method with profile 

likelihood;  and the Bayesian model with MCMC.

Accident 
Year

Chain-
Ladder

Normal 
Approximation 

Reserves Reserves Reserves Std. Dev. Reserves Std. Dev.
2 -0.86 1.00 1.38 32.25 3.27 34.04
3 -0.91 2.00 21.35 47.19 12.16 45.84
4 -6.60 3.00 5.81 57.88 7.00 52.57
5 -6.02 7.00 64.14 73.00 22.78 63.70
6 -8.72 -12.00 -54.89 81.64 -16.53 68.51
7 -8.82 22.00 77.69 107.55 7.02 75.79
8 9.51 48.00 244.08 148.15 37.71 88.45
9 3041.18 3085.00 3363.20 514.50 2859.00 718.30

TOTAL 3018.77 3182.00 3722.70 620.50 2933.00 768.40

Bayesian method with profile 
likelihood

Bayesian method using 
MCMC

 
In this example the reserves in both Bayesian methods are not very close. They are given 
in Table 4.  The chain-ladder development factors can be computed without any problem 
and applied to obtain the reserves, since all the cumulative claims values are positive. 
Notice that the reserves are negative for all but the last two accident years. This is a result 
of the fact that three of the development factors turn out to be less than one.  In this case 
the estimates of the reserves obtained with the Bayesian method presented here are lower 
than those of the non-Bayesian ones and than the others. The variance of the MCMC 
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estimates is larger than those from the direct simulation with the profile likelihood for 
accident years 2 and 9, and for the total. In the other accident years they are smaller. 
Apparently allowing δ to vary does not have a systematic effect on the variances. But in 
any case they are more realistic than when fixing δ  as equal to its MLE. The non-
informative priors used in the third stage of the hierarchical model seem to allow a better 
fit to the data. These prediction errors are comparable to the standard deviation of the 
predictive distribution in the Bayesian models.  
 
Notice that the reserves for accident year 6 are negative under all methods. So we will 
plot the complete distribution  to see the behavior of the outstanding claims for this  year.  
Figure 1 shows the predictive distribution for accident year 6 (panel a)) and for the total 
(panel b)).   The distribution for reserves corresponding to accident year 6  has a long 
right tail and yet shows a large probability of negative values. In fact the predictive mean 
is close to zero. This explains why the reserves are negative.   The results for accident 
years 2 and 4 (not shown) also yield medians very close to zero, but even so the 
predictive mean is positive. The predictive distribution of total reserves is symmetric but 
is clearly not Normal, as can be verified by comparing the percentiles with those of the 
Normal. The 95% predictive interval obtained from the MCMC results is given by 
(1653,4670) whereas the Normal interval would be (1595,4255). The MCMC predictive 
distribution has heavier tails, in particular the right one. Hence if one uses a Normal 
approximation, because the distribution looks symmetric, it is possible that for some 
accident years there may be a high probability that claims result much larger that the 
reserves. There is also a probability larger than .05 that claims are larger than the reserves 
if the chain-ladder method is used, although the total reserves are fairly close:  3018.77 
for the chain-ladder and 2933.0 for the Bayesian model.  
 
7. CONCLUDING REMARKS 
 
The Bayesian method presented here constitutes an appealing alternative to claims 
reserving methods in the presence of negative values in incremental claims for some cells 
of the development triangle.  It yields results that are comparable to those of other 
methods, but does not have their limitations. Furthermore, the model is based on fairly 
standard and widely used assumptions. However, the main advantage is that this method 
will not break down even in the presence of  enough negative values (in number and/or 
size), even if these make the total sum of one or more of the columns  in the development 
triangle of  incremental claims be negative,  and so most other methods break down. One 
other model that does not break down is the one proposed by Mack (1993), but its 
purpose is to provide a stochastic model that reproduces chain-ladder reserve estimates. 
The main advantages, for practitioners, of the method presented in this paper are that it 
yields the complete distribution of outstanding claims and it works when most other 
methods break down. Methods that do not break down assume Normality, which may not 
be adequate, since incremental claims are known to have skewed distributions. Or else 
they reproduce chain-ladder estimates, which in some cases may not be desirable. 
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Figure 1. Predictive distribution for outstanding claims in accident year 6 and the  
total, obtained using MCMC with 10,000  simulations. 
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