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ABSTRACT. In his original monograph on portfolio selection, Markowitz (1952) discusses
the tradeoff between the mean and variance of a portfolio. Since then, especially recently,
much attention has been focused on asymmetric distributions to minimize risks with given
return goal for investors who have special skewness preferences. To address this issue, we
extend Krokhmal et al. (2002)’s approach by adding CVaR-like constraints to the traditional
portfolio optimization problem. The CVaR optimization technique has the advantage of
reshaping either the left or right tail of a distribution while not significantly affecting the
other. Specifically, this approach is used to manage the skewness of asset-liability portfolios
of financial institutions. In addition, we compare the CVaR-like constraints approach with
traditional Markowitz method and some other alternatives such as, the CVaR approach
(directly optimize CVaR), the Boyle-Ding approach as well as the mean-absolute deviation
(MAD) approach. Our numerical analysis provides empirical support for the superiority
of CVaR-like constraints approach in terms of skewness improvement of mean-variance
portfolios.

1. INTRODUCTION

One of the fundamental roles of banks, insurance companies and other financial institutions is
to invest in various financial assets. Correct assessment of their portfolio performance requires
risk-return analysis. In his seminal work on modern portfolios, Markowitz (1952) quantifies the
trade-off between the risk and expected return of a portfolio within a static context. However, more
recently, higher moments of returns have become relevant to portfolio choice (Boyle and Emanuel,
1980). Markowitz (1952), Borch (1969) and Feldstein (1969) argue that introducing skewness
of returns adds the dimension needed to improve the approximation provided by the mean and
variance.

Early theories on portfolio choice including three moments were developed by Jean (1971),
Arditti and Levy (1975), Ingersoll (1975), Kraus and Litzenberger (1976), Simkowitz and Beedles
(1978), Conine and Tamarkin (1981) and others. Those theoretical framework on portfolio perfor-
mance assessment has profound impact on portfolio risk management. Portfolio risk management,
especially tail risk management, is crucial for financial institutions (Wright, 2007). Unfortunately,
some commonly used tail risk measures nowadays, e.g. value-at-risk (VaR), do not capture all
aspects of risk. For instance, the major shortcoming of the VaR-based risk management (VaR-RM)
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stems from its main focus on the probability rather than magnitude of a loss. Basak and Shapiro
(2001) exhibit that, when a large loss occurs, the loss under VaR-RM is larger than that when not
engaging in the VaR-RM. Moreover, Artzner et al. (1999) show that VaR has undesirable proper-
ties such as lack of sub-additivity, i.e., the VaR of a portfolio with two instruments may be greater
than the sum of individual VaRs.

To overcome the limitations of the VaR-RM, Basak and Shapiro (2001) propose an alternative
form of risk management that maintains a given level of conditional value at risk (CVaR) when
losses occur. CVaR is also called mean excess loss, mean shortfall, or tail VaR. It is the conditional
expected loss (or return) exceeding (or below) VaR. In contrast to the VaR-RM, losses in the CVaR-
based risk management (CVaR-RM) are lower than those without. Moreover, CVaR is a more
consistent risk measure than VaR because it is sub-additive and concave. It can also be optimized
using linear programming (LP) and nonsmooth optimization algorithms.

Although the theories on portfolio two- or three-moment problems and tail risk management are
rich, there are few studies explicitly examining the link between them. To fill this gap, this paper
sheds light on the theoretical and empirical impact of tail risk management on the portfolio efficient
frontier. We introduce a method to construct the portfolio efficient frontier by adding CVaR-
like constraints to the traditional Markowitz (1952)’s mean-variance (MV) portfolio optimization
problem. If portfolio managers disclose and monitor CVaR, their optimal behavior will not only
reduce losses in the most adverse states (Basak and Shapiro, 2001) but also maximize the skewness
given that, portfolios are not extremely positively skewed (Kane, 1982). Moreover, our approach
extends the results of Rockafellar and Uryasev (2000). We show how to apply this method to
the asset-liability management of a financial institution (e.g. an insurance company). Finally,
we compare the CVaR-like constraints frontier with Markowitz (1952)’s MV and Boyle and Ding
(2006)’s mean-variance-skewness (MVS) frontiers. Our study provides empirical support for the
superiority of CVaR-like constraint approach over its alternatives.

Our paper is organized as follows: Section 2 lays the foundation of the analysis. We discuss the
asset-liability portfolio and derive the optimization problems. Section 3 develops our CVaR-like
constraint approach. Section 4 compares the CVaR-like constraint method with the Boyle-Ding
approach theoretically. Section 5 presents the numerical illustrations with empirical data. Section
7 concludes the paper.

2. PORTFOLIO AND EFFICIENT FRONTIER: DESCRIPTIONS

2.1. Asset-Liability Portfolio Problem. Portfolio theory can be applied to the asset liability man-
agement (ALM) of financial institutions such as insurance companies. Insurers’ ALM emphasizes
the overall target profit earned on the asset side as well as the liability side. They collect premiums
from several lines of business and invest the collected premiums and addition capitals in assets
such as stocks, bonds, real estates, etc. Then they pay out losses and expenses. The margin is the
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net result, i.e., the excess of written premiums over losses and expenses, divided by the written
premiums,

Margin =
Written premiums − Losses Incurred − Expenses

Written premiums
= 1− Combined ratio1.

At the beginning of a year, the company writes a line of business i with premium Πi for i =

1, 2, . . . , k1. The total premium is Π = Π1 + · · ·+ Πk1 . The amount in the company’s favor at the
end of the year is ΠiMi for line i and the total for all lines is

k1∑
i=1

ΠiMi = Π

k1∑
i=1

aiMi,

where the weight of line i is ai = Πi/Π and Mi is the margin of line i. Generally, ai is given.
However, we could allow the ai to be decision variables in order to determine an optimal portfolio
of lines of businesses.

From the view of investment, the company collects Π, and it has additional contingency capital
λΠ to be invested at the beginning of the year. For each line of business, Πi(1 + λi) is invested.

k1∑
i=1

Πi(1 + λi) =

k1∑
i=1

Πi +

k1∑
i=1

Πiλi = Π(1 + λ),

Assume the assets have returns Rj where j = 1, · · · , k2. Let bj be the proportion invested in
asset j. Let loss expense be included in the loss Li where i = 1, . . . , k1. The total profits in the
company’s favor at the end of the year are written as follows:

(1)

(1 + λ)Π

k2∑
j=1

bj(1 + Rj)−
k1∑
i=1

Li = (1 + λ)Π

k2∑
j=1

bjRj + (1 + λ)Π− Π

k1∑
i=1

Πi

Π

Li

Πi

= (1 + λ)Π

k2∑
j=1

bjRj + (1 + λ)Π

k1∑
i=1

ai − Π

k1∑
i=1

ai
Li

Πi

= Π

k1∑
i=1

ai(1−
Li

Πi

) + (1 + λ)Π

k2∑
j=1

bjRj + λΠ

= Π

(
k1∑
i=1

aiMi + (1 + λ)

k2∑
j=1

bjRj + λ

)

= Π

(
k1∑
i=1

aiMi +

k2∑
j=1

bjR
∗
j + λ

)
,

1Combined ratio is generally defined as

Combined ratio =
Losses Incurred + Expenses

Written premiums
or

Losses Incurred
Earned premiums

+
Expenses

Written premiums
.
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where Li is the sum of claim payments and administrative expenses in year i, Mi = 1 − Li

Πi

and

R∗
j = (1 + λ)Rj . In addition, a1 + a2 + · · · + ak1 = 1 and b1 + b2 + · · · + bk2 = 1. Because λ is

known at the beginning of the year, we can only consider part Π
(∑k1

i=1 aiMi +
∑k2

j=1 bjR
∗
j

)
. The

λ above has no effect on the return maximization problem; nor does it contribute anything to the
variance.

Change the notation and write the margins and returns in one vector R with Ri the margin of
line i if 0 ≤ i ≤ k1 and return of asset i if k1 < i ≤ n where k1 + k2 = n. The idea of portfolio
theory is to determine the weights X = [xi]

n
i=1 to maximize the expected return E(X>R) subject

to variance and higher-moment constraints or equivalently, to minimize the variance Var(X>R)

subject to return and higher-moment constraints. If we assume that the company cannot easily
change its business, then the weights for the margins xi with i ≤ k1 are known and cannot be
changed. In addition, the weights of asset xi with k1 < i ≤ n may be subject to some conditions
such as no short sales for some or all assets.

2.2. Definition and Notation. Consider the problem of selecting a portfolio with k1 lines of busi-
ness and k2 assets (k1 + k2 = n). If k1 = 0, we solve the general asset portfolio problem.
Suppose we have observations of each assets (and/or lines of business) for m periods. For sim-
plicity, we assume one period is a year. Define Ri the annual return for asset or line of business
i for i = 1, . . . , n. Note that the asset return considered in the portfolio problem is a return on
assets including additional contingency capital reserves, i.e., R∗

i = (1+λ)Ri when k1 < i ≤ n. In
the following discussion, we remove the symbol “∗” from R∗, again for simplicity. However, we
should be aware that the new return notation Ri is still an asset return Ri adjusted by (1 + λ) for
k1 < i ≤ n. The first three moments of the model for asset return or margin Ri are as follows:

(2)

µi = E[Ri], i = 1, . . . , n;

σij = E[(Ri − µi)(Rj − µj)], i, j = 1, . . . , n;

γijk = E[(Ri − µi)(Rj − µj)(Rk − µk)], i, j, k = 1, . . . , n.

Let variable ril represents the observed value of Ri in year l for l = 1, . . . ,m. Given the sample
return {ril}, we can write the empirical distribution moments (mean, covariance and co-skewness)
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as follows:

(3)

µ̂i =
1

m

m∑
l=1

ril, i = 1, . . . , n;

σ̂ij =
1

m

m∑
l=1

(ril − µ̂i)(rjl − µ̂j), i, j = 1, . . . , n;

γ̂ijk =
1

m

m∑
l=1

(ril − µ̂i)(rjl − µ̂j)(rkl − µ̂k), i, j, k = 1, . . . , n.

Next, we can calculate the portfolio empirical moments after we obtain the moments for each
asset and/or line of business from equation (3). Let variable xi be the proportion invested in asset
or line of business i. The first three empirical moments of the portfolio are equal to:

(4)

µ̂(x) =
1

m

m∑
l=1

µ̂(x)l =
1

m

m∑
l=1

n∑
i=1

rilxi =
n∑

i=1

µ̂ixi,

σ̂2(x) =
1

m

m∑
l=1

[µ̂(x)l − µ̂(x)]2 =
n∑

i=1

n∑
j=1

σ̂ijxixj,

1

m

m∑
l=1

[µ̂(x)l − µ̂(x)]3 =
n∑

i=1

n∑
j=1

n∑
k=1

γ̂ijkxixjxk,

where the portfolio empirical return in year l is

µ̂(x)l =
n∑

i=1

rilxi ∀ l = 1, . . . ,m.

2.3. Optimization Problem Description. The classical MV frontier is obtained by solving the
following optimization problem, given moment information µi, µj and σij of the return Ri and
Rj . The traditional frontier consists of the points (σ2(x), µ(x)) where µ(x) varies over a range of
values.

(5)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to
n∑

i=1

xi = 1

n∑
i=1

µixi = µ0(x)

xi ≥ 0 for i = 1, 2, . . . , n.

The constraint xi ≥ 0 can be eliminated to allow short sell of the i-th asset. Other inequality
constraints can be added to reflect restrictions on proportions invested in the various assets.
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Optimization problem (5) can also be applied to an ALM problem of an insurer. As for an
asset-liability portfolio, the overall variance σ2 is calculated as follows:

(6)

σ2(x) = σ2
L(a) + σ2

V (b) + 2σLV (a, b)

=

k1∑
i=1

k1∑
j=1

σijaiaj +

k2∑
i=1

k2∑
j=1

σijbibj + 2

k1∑
i=1

k2∑
j=1

σijaibj

=
n∑

i=1

n∑
j=1

σijxixj,

where σ2
L is the variance of the lines of business; σ2

V is the variance of the assets; and σLV is
covariance of the lines of business and assets. Given a certain level of overall return µ0(x), we can
minimize the overall variance σ2(x) to obtain the optimal weights for assets and lines of business.
Similar to problem (5), the ALM optimization problem is defined as follows:

(7)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to
k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x), and n = k1 + k2.

If the portfolio only includes assets (k1 = 0 and k2 = n), we will return to the classical portfolio
problem (5).

3. IMPROVING SKEWNESS OF MEAN-VARIANCE PORTFOLIO WITH CVAR-LIKE

CONSTRAINTS

In the MV analysis, the variance captures a portfolio’s overall risk. A more recently introduced
risk measure, VaR has been widely used for measuring downside risk and has become a part of the
financial regulations in many countries (Jorion, 1997; Dowd, 1998; Saunders, 1999). It measures
how the return of an asset or of a portfolio of assets (and liabilities) is likely to decrease over a
certain time period. The β-level VaR is defined as follows:

α(x, β) = min{α ∈ R : P(R(x) ≤ α) ≥ β}.

The variable α(x, β) is the β-lower quantile of the portfolio return distribution. Typically, the
quantile β is set around 5%. Unfortunately, VaR is not the panacea of risk measurement method-
ologies. A major technical problem is that VaR is not sub-additive. For example, the variance of
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the sum of two variables Var(A + B) could be larger than the sum of these two variables’ vari-
ances Var(A) + Var(B). This imposes a problem for portfolio risk management because we hope
portfolio diversification would reduce risk.

As an improved risk measure, the β-level CVaR, is the expected portfolio return, conditioned on
the portfolio returns being lower than the β-level VaR over a given period. It is defined as

CVaR(x, β) = E(R(x)|R(x) ≤ α(x, β)).

CVaR has some superior characteristics over variance and VaR (Rockafellar and Uryasev, 2000;
Uryasev, 2000; D. Bertsimas and Samarovc, 2004; Wu et al., 2005). Variance is a symmetric
measure and it does not differentiate between the desirable upside and the undesirable downside
risks (Wu et al., 2005). In contrast, CVaR does not rely on the symmetric distribution assumption
so we can use it to improve a portfolio’s skewness. On the other hand, compared with VaR, CVaR
not only takes into account probability but also the size of a return (or loss). Additionally, CVaR is
a coherent risk measure that satisfies properties of monotonicity, sub-additivity, homogeneity, and
translational invariance. Some of those desirable properties (e.g. sub-additivity) do not hold for
VaR.

Some investors, especially institutional investors, may want to use CVaR to control downward
risk and increase skewness but may not want to deviate too much from the Markowitz MV portfo-
lios. To achieve this goal, Krokhmal et al. (2002) suggest using CVaR constraints to improve the
skewness of MV portfolio. We extend it to a method which increases the skewness of Markowitz
MV portfolios by adding one or more CVaR-like constraints. Imposing more than one CVaR-like
constraints with several different β-levels can reshape the return distribution according to the cus-
tomers’ preferences. These preferences are specified directly in percentile terms. For instance, we
may require that the mean values of the worst 1%, 5% and 10% losses are limited by some values.

Given β, w ∈ R and a sample of asset returns (and/or lines of business), we write the sample
version of the traditional Markowitz MV model (5) with a CVaR constraint as follows:
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(8)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to CVaR(x, β) ≥ w

k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x)

xi ≥ 0, i = 1, 2, . . . , n.

The above CVaR constraint ensures a lower tail expectation in an amount at least equal to w.
Based on Rockafellar and Uryasev (2000), β-level CVaR can be obtained by the following opti-

mization:

(9) CVaR(x, β) = max
α

α− 1

β
E((α− R(x))+),

where (a)+ is defined as max(a, 0).

Proof. See Appendix.

Based on the Equation (9), the model (8) can be written as:

(10)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to max
α

α− 1

β

1

m

m∑
j=1

(
α−

n∑
i=1

rijxi

)+

≥ w

k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x)

xi ≥ 0, i = 1, 2, . . . , n.
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Because obtaining a tractable formulation for the model (10) is difficult, Krokhmal et al. (2002)
suggest dropping its maximization over α (see details in Theorem 2 in Krokhmal et al. (2002)).
Therefore, we rewrite model (10) as follows:

(11)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to α− 1

β

1

m

m∑
j=1

(
α−

n∑
i=1

rijxi

)+

≥ w

k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x)

xi ≥ 0, i = 1, 2, . . . , n.

That is, the first constraint in the above model is not exactly a CVaR constraint, but a CVaR-like
constraint. We call this method the “CVaR-like constraint approach” or “MV + CVaR approach”.
After we linearize the CVaR-like constraint, model (11) is equivalent to:
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(12)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to α− 1

β

1

m

m∑
j=1

yj ≥ w

yj ≥ α−
n∑

i=1

rijxi, j = 1, . . . ,m

k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x)

xi ≥ 0, i = 1, 2, . . . , n

yj ≥ 0, j = 1, 2, . . . ,m.

Notice that model (12) is a tractable problem. It has a quadratic convex objective (i.e. Σ =

{σij} should be positive semidefinite) and linear constraints and thus can be solved as easy as the
Markowitz MV problem.

As mentioned before, we can add more than one CVaR-like constraint with several different β-
levels and reshape the return distribution according to the customers’ preferences. For example, we
can add p CVaR-like constraints by using various quantiles β1, β2, . . . , βp ∈ (0, 1), and different
w1, w2, . . . , wp ∈ R:
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(13)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to αl − 1

βl

1

m

m∑
j=1

yl
j ≥ wl l = 1, 2, . . . , p

yl
j ≥ αl −

n∑
i=1

rijxi, j = 1, 2, . . . ,m; l = 1, 2, . . . , p

k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x)

xi ≥ 0, i = 1, 2, . . . , n

yl
j ≥ 0, j = 1, 2, . . . ,m; l = 1, 2, . . . , p

αl ∈ R, l = 1, 2, . . . , p.

That is, we require that the mean values of the worst β1, β2, . . . , βp ∈ (0, 1) losses are limited by
different values of w1, w2, . . . , wp ∈ R based on the customers’ risk tolerance. Compared with the
traditional approach, which specifies risk preferences in terms of utility functions, this approach
provides a new efficient and flexible risk management tool and adds to the MVS literature. Fur-
thermore, our proposed model (13) has an additional desirable feature: adding many CVaR-like
constraints will not significantly increase computational costs while we can increase skewness and
achieve portfolio optimization at the same time. Therefore, this approach provides a new efficient
and flexible risk management tool so it contributes to the MVS literature.

4. COMPARISON BETWEEN CVAR-LIKE CONSTRAINT APPROACH AND BOYLE-DING

APPROACH

The MV frontier, as it is usually determined, has no explicit reference to skewness. Boyle and
Ding (2006) give a method to increase the skewness of a given portfolio x∗, obtaining a new portfo-
lio x for which the mean returns are equal and the variance of returns are almost equal. Moreover,
the skewness of the new portfolio R(x) should be greater than the skewness of the original R(x∗).
Investors should prefer x to x∗ because a small increase in risk allows for a relatively large increase
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in skewness (and greater likelihood of a large return). These conditions can be written as follows:

(14)

µ(x) = µ(x∗)

σ2(x) ≥ σ2(x∗) + ε

1

m

m∑
j=1

[µ(x)j − µ(x)]3 ≥ 1

m

m∑
j=1

[µ(x∗)j − µ(x∗)]3 + δ,

where both ε and δ are small positive numbers2.
Now define

(15)

αj =
n∑

i=1

(rij − µi)x
∗
i = µ(x∗)j − µ(x∗), j = 1, . . . ,m

g(αj) = (αj − ε)2 + (αj − ε)(αj + ε) + (αj + ε)2

ci =
m∑

j=1

g(αj)(rij − µi)

β =
n∑

i=1

cix
∗
i .

Next, we specify a condition as follows:

(16) αj − ε <
n∑

i=1

(rij − µi)xi < αj + ε, j = 1, . . . ,m.

With condition (16), we can linearize the third moment (or skewness) inequality in (14) as

(17)
n∑

i=1

cixi ≥ β + δ.

Proof. See Appendix.

2In most cases, ε < δ.
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Boyle and Ding (2006) add a constant δ ≥ 0 to the right side to increase the likelihood that the
resultant new portfolio has higher skewness. This is the statement of the new problem:

(18)

Minimize
n∑

i=1

n∑
j=1

σijxixj

subject to
k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x)

n∑
i=1

(rij − µi)xi ≤ αj + ε ∀j = 1, . . . m

n∑
i=1

(rij − µi)xi ≥ αj − ε ∀j = 1, . . . m

n∑
i=1

cixi ≥ β + δ

xi ≥ 0 ∀i = 1, 2, . . . , n.

They indicate that the problem should be solved iteratively, replacing x∗ by the solution x, until no
significant increase in skewness is obtained.

Since Boyle-Ding approach needs to set the constants ε and δ beforehand, one should do several
try-and-error experiments to make feasible decision. Boyle and Ding (2006) suggests iterately
performing the optimization process to obtain the “best” optimum. This also depends on some
try-and-error tests and cannot be done automatically. In contrast, CVaR-like constraints approach
is more easily to implement. In addition, CVaR-like constraints approach can accurately reshape
the distribution more effectively by adding specific quantile constraint with (β, w) according to the
individual’s preferences.

Moreover, as long as the portfolio distribution is not skewed extremely positively (Kane, 1982),
the CVaR-like constraint approach offers much higher skewness than the MVS approach with only
slight deviation from the MV efficient frontier. The experiment in Section 5 also shows that the
Boyle-Ding approach can only increase skewness for low-variance portfolios. So it loses its power
when customers prefer relatively higher risks. In this case, the MV + CVaR approach is a better
choice when management of high-risk portfolios is at stake.
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5. EMPIRICAL ILLUSTRATION: MULTIPLE ASSETS AND LINES OF BUSINESS

We first compute the optimal portfolios of five assets (k1 = 0 and k2 = 5) based on the CVaR-
like constraint (also called “MV + CVaR”) and Boyle-Ding MVS approaches, respectively, using
yearly data ranging from 1980 to 2005 (m = 26). Then we extend our comparison to 20 assets
(k1 = 0 and k2 = 20). As stated before, our analysis can also be applied to an asset-liability port-
folio. To illustrate, we selecte fourteen lines of business (k1 = 14) and five assets (k2 = 5). When
evaluating the MV + CVaR and Boyle-Ding MVS approaches, we plot their efficient frontiers and
compare them with the traditional MV frontier. In addition, we compare their skewness-variance
graphs and asset mix plots. All of our examples assume no borrowing is allowed.

Table 1 summarizes statistics of the annual returns of 20 assets and the annual margins of 14 lines
of business in our examples. Most of the insurance lines of business have negative skewness. This
negative skewness suggests that the margins are pulled down by rare catastrophic events. Among
all 20 assets, the S&P 500 has the highest average rate of return and, the lowest skewness. This
is consistent with the observations made by David (1997). He concludes that stock market returns
exhibit negative skewness and that large negative returns are more common than large positive
ones. Moreover, mortgage-backed securities have the highest skewness.

Example 1. We first examine a portfolio with five assets (k1 = 0 and k2 = 5). These five assets
include a short-term US Treasury bill, a long-term US Treasury bond, a mortgage-backed security,
a crude oil future and the S&P 500. Our observation period is from 1980 to 2005 (m = 26). There
are five optimal portfolios whose weights are to be determined, xi for i = 1, . . . , 5. The portfolio
return is

5∑
i=1

µixi = 0.0794x1 + 0.0983x2 + 0.0976x3 + 0.0766x4 + 0.1431x5.

We solved the model (12) to obtain MV + CVaR optimal portfolios. We set w equal to

CVaRMV
0.05(r) + 0.05|CVaRMV

0.05(r)|,

where CVaRMV
0.05(r) is the empirical 5%-level CVaR obtained from Markowitz MV optimization.

The construct of w is reasonable because the empirical 5%-level CVaR obtained by the MV + CVaR
approach should be close to and, should be a little larger than its Markowitz MV counterpart. With
the Boyle-Ding MVS approach, we solve equation (18) to find another portfolio based on MV that
had the same return, approximately the same variance, and had increased skewness with parameters
ε = 0.2 and δ = 0.0001.3

After obtaining the optimal weights of x∗j for three methods, respectively, we plot their efficient
frontiers and skewness-variance graphs in Figures 1 and 2. Figure 1 shows the Markowitz MV, the
Boyle-Ding MVS and the MV + 5%-level CVaR frontiers. The frontiers of these three approaches

3The problem is sensitive to the values of ε and δ. For example, with ε = 0.3 and δ = 0, the solutions to the new
problem are essentially identical to the original MV solutions.
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TABLE 1. Descriptive Statistics of assets and lines of business from 1980 to 2005

Assets Mean Variance Skewness Lines Mean Variance Skewness
TSY: 1-3 0.0794 0.0022 0.6774 Cml Prop 0.0030 0.0101 0.2743
TSY: 7-10 0.0983 0.0090 0.5775 Allied -0.0732 0.0319 -0.5677
MBS 0.0976 0.0075 1.9130 Hm/Fr -0.0978 0.0143 -2.2626
Crude 0.0766 0.0757 0.2840 CMP -0.1146 0.0114 0.0493
S&P 500 0.1431 0.0259 -0.5031 Comp -0.1225 0.0062 0.1934
Agcy 1-3 0.0817 0.0023 0.7848 GL -0.1572 0.0720 3.1982
Agcy 7-10 0.0999 0.0080 0.8760 Med/Prof -0.2607 0.0441 -0.2115
Corp AAA 3-5 0.0897 0.0035 0.9103 PPAuto -0.0402 0.0018 0.5091
Corp AA 3-5 0.0931 0.0037 0.9236 Cauto -0.0830 0.0086 -0.4159
Corp A 3-5 0.0950 0.0038 1.0309 FSB 0.1106 0.0168 -0.2171
Corp BBB 3-5 0.0954 0.0038 1.0475 BC/BS 0.0060 0.0007 -0.6929
Corp HYld 0.1003 0.0102 0.9256 PCHlth -0.0551 0.0042 -0.8627
Sovrgn: Inter 0.1057 0.0042 0.6630 Reins -0.1607 0.0173 -1.9770
Yanky 0.0991 0.0068 0.8512 Other -0.0790 0.0098 0.0760
ABS 0.0801 0.0018 0.6451
Muni 3-5 Yrs 0.0580 0.0012 0.4472
Commodities 0.0269 0.0007 1.7360
Lumber 0.0254 0.0027 1.4153
Currency 0.0114 0.0109 0.4489
ML Convert 0.1228 0.0190 0.0225

The sample includes the annual returns of 20 assets and the annual margins of 14 lines of business
from 1980 to 2005. Data are offered by the General Re Company. The asset “TSY: 1-3” stands
for the short-term US Treasury bill; “TSY: 7-10” is the long-term US Treasury bond; “MBS” is
the mortgage-backed security; “Crude” is the crude oil future; “S&P 500” is the S&P 500 Index;
“Agcy 1-3” is the short-term agency bond; “Agcy 7-10” is the long-term agency bond; “Corp AAA
3-5” is the middle-term AAA corporate bond; “Corp AA 3-5” is the middle-term AA corporate
bond; “Corp AAA 3-5” is the middle-term A corporate bond; “Corp BBB 3-5” is the middle-term
BBB corporate bond; “Corp HYld” is the corporate high yield bond; “Sovrgn: Inter” is the inter-
national sovereign bond; “Yanky” is the Yankee bond; “ABS” is the asset-backed security; “Muni
3-5 Yrs” is the middle-term municipal bond, “Commodities” is the commodity future; “Lumber”
is the lumber future; “Currency” is the currency future and “ML Convert” is the convertible bond.
The lines of business include Commercial Property (Cml Prop), Allied Lines (Allied), Farmown-
ers/Farmers Multiple Peril (Hm/Fr), Commercial Multiple Peril (CMP), Workers’ Compensation
(Comp), General Liability (GL), Medical Professional Liability (Med/Prof), Private Passenger Auto
Liability (PPAuto), Commercial Auto/Truck Liability (Cauto), Fidelity/Surety (FSB), Blue Cross
Blue Shield (BC/BS), Public and Commercial Health Insurance (PCHlth), Reinsurance (Reins) and
Other Insurance (Other).

are similar. As we expect, the frontier of the MV + CVaR approach is almost the same as that of
the Markowitz MV because it is derived from the traditional MV by adding more constraints to the
MV problem.

The desirability of the MV + CVaR approach is shown in Figure 2. Figure 2 compares the 5-
asset skewness-variance graphs of the three approaches. With a reasonable sacrifice of the return
variance, the MV + CVaR approach has a higher skewness than the Markowitz MV. The skewness
is increased not much for the Boyle-Ding MVS. Figure 2 suggests that the MV + CVaR approach



16 SAMUEL H. COX, YIJIA LIN, RUILIN TIAN, AND LUIS F. ZULUAGA

FIGURE 1. The efficient frontiers of 5-asset portfolios based on the Markowitz
Mean-Variance approach (“Traditional MV”), the Markowitz Mean-Variance ap-
proach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-Ding Mean-
Variance-Skewness approach (“BD”). The vertical axis stands for the expected re-
turns of portfolios, and the horizontal axis is for variances.

FIGURE 2. The 5-asset portfolios skewness-variance graphs of the Markowitz
Mean-Variance approach (“Traditional MV”), the Markowitz Mean-Variance ap-
proach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-Ding Mean-
Variance-Skewness approach (“BD”). The vertical axis stands for the skewness of
portfolios, and the horizontal axis is for variances.

not only achieves left-tail risk management but also has higher skewness. That is, this method
would let the financial institutions enjoy more potential for higher returns.
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FIGURE 3. The 5-asset mix for the efficient portfolios of the Markowitz Mean-
Variance approach (“Traditional MV”), the Markowitz Mean-Variance approach
with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-Ding Mean-
Variance-Skewness approach (“BD”). The vertical axis stands for the weight of
each asset, and the horizontal axis is the solution number for the efficient portfolios
in Figure 1. The asset “TSY: 1-3” stands for the short-term US Treasury bill; “TSY:
7-10” is the long-term US Treasury bond; “MBS” is the mortgage-backed security;
“Crude” is the crude oil future; and “S&P” is the S&P 500 Index.

We also plot in Figure 3 the asset mix for the 20 efficient portfolios of these three methods.
The horizontal axis shows only the solution number; return and variance increase as the solution
number increases. We can think of the horizontal axis as representing either the return or the
variance. As the required return increases, the mix shifts from bonds to equity as the weight
of MBS first rises and then falls. All three methods requires all five assets to form the efficient
frontier. None of the portfolios in these three approaches contain a lot of crude oil future. Figure 3
also shows the source of skewness. Although the three methods have similar holdings in the S&P
500, the MV + CVaR approach invests relatively more in the long-term US Treasury bond and less
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FIGURE 4. The efficient frontiers of 20-asset portfolios based on the Markowitz
Mean-Variance approach (“Traditional MV”), the Markowitz Mean-Variance ap-
proach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-Ding Mean-
Variance-Skewness approach (“BD”) . The vertical axis stands for the expected
returns of portfolios, and the horizontal axis is for variances.

in the crude oil future. Since the skewness of the long-term US Treasury bond is higher than that
of the crude oil future, this confirms our result shown in Figure 2.

Example 2. More assets are included in the portfolio this time. In addition to 5 assets in
Example 1, we include another 15 assets. That is, we expand the sample to 20 assets (k1 = 0

and k2 = 20). These 15 new assets include a short-term agency bond, a long-term agency bond, a
middle-term AAA corporate bond, a middle-term AA corporate bond, a middle-term A corporate
bond, a middle-term BBB corporate bond, a corporate high yield bond, an international sovereign
bond, a Yankee bond, an asset-backed security, a middle-term municipal bond, a commodity future,
a lumber future, a currency future and a convertible bond. Their mean-variance frontiers and
skewness-variance graphs based on the three approaches analyzed are shown in Figures 4 and 5.
These graphs are similar to those in Example 1. Specifically, skewness with the MV + CVaR
approach is higher than those of the MV and Boyle-Ding approaches although its portfolios are
relatively less efficient.

Example 3. In this example, we study the ALM problem by maximizing the overall profits of
assets and lines of business. We use 14 lines of business (k1 = 14) and the same five assets as
in Example 1 (k2 = 5). The data are from the General Re Company from 1980 to 2005. These
14 lines of business are Commercial Property, Allied Lines, Farmowners/Farmers Multiple Peril,
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FIGURE 5. The 20-asset portfolios skewness-variance graphs of the Markowitz
Mean-Variance approach (“Traditional MV”), the Markowitz Mean-Variance ap-
proach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-Ding Mean-
Variance-Skewness approach (“BD”). The vertical axis stands for the skewness of
portfolios, and the horizontal axis is for variances.

Commercial Multiple Peril, Workers’ Compensation, General Liability, Medical Professional Li-
ability, Private Passenger Auto Liability, Commercial Auto/Truck Liability, Fidelity/Surety, Blue
Cross Blue Shield, Public and Commercial Health Insurance, Reinsurance and Other Insurance.

As for the asset-liability portfolio containing 14 lines of business and 5 assets, since both the
weights of lines and the weights of assets are required to sum to one separately, the mean-variance
frontier becomes more “sparse”. The “sparse” here means that there are more available portfolios
that can satisfy a specific combination of (σ2, µ). Therefore, it is more likely to increase skewness
without sacrificing variance (increase variance). The following experiments confirm this inference.

According to equation (18), ε constrains the biggest increase of variance and δ denotes the
highest possible improvement of skewness. In general, a big increase of skewness is accompanied
with a large sacrifice of variance. Therefore, these two tolerance parameters change in the same
direction. In the figures 6 and 7, the Boyle-Ding curves are obtained by setting ε = 0.03 and
δ = 0.0003. While, we set ε = 0.01 and δ = 0.00005 for the Boyle-Ding approach in figures 8 and
9.

In both cases, mean-variance frontiers got from skewness-improving methods match the Markowitz
frontier very well, no matter the CVaR-like constraints or Boyle-Ding approach is considered.
When δ is high (Figure 7), Boyle-Ding approach outperforms CVaR-like constraints approach
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FIGURE 6. The efficient frontiers of 14-line and 5-asset portfolios based on the
Markowitz Mean-Variance approach (“Traditional MV”), the Markowitz Mean-
Variance approach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-
Ding Mean-Variance-Skewness approach (“BD”) with ε = 0.03 and δ = 0.0003.
The vertical axis stands for the expected returns of portfolios, and the horizontal
axis is for variances.

in the low-variance interval (0, 0.013) and CVaR-like constraints approach is better in the high-
variance regime. Theoretically, one should increase δ as high as possible conditional on no sacrifice
of the mean-variance frontier. In our example, δ = 0.0003 is preferred.

Notice that for both cases, in a small mediate variance interval, CVaR-like constraints approach
obtains lower skewness than classical Markowitz method does. This phenomenon can also be
found in the 20-asset portfolio example. In Figure 4, the “MV+CVaR” frontier deviates from the
Markowitz mean-variance frontier in the variance interval (0.002, 0.005). In figure 10, we use
maximum-entropy distribution to show effects of CVaR-like constraints on portfolio distribution.

The maximum-entropy distribution is the representative distribution which is most likely to re-
alize with given moments and support. It only considers moment information and therefore, can be
used to check effects of our portfolio optimization approaches on distributions. In Figure 10, three
moments are given and the support is set at [µ − 4σ, µ + 4σ]. Since this method is not the focus
of our paper, we will not discuss it in details. Below is a simplified “mathematical definition” of
maximum-entropy approach we used in our paper.
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FIGURE 7. The 14-line and 5-asset portfolios skewness-variance graphs of the
Markowitz Mean-Variance approach (“Traditional MV”), the Markowitz Mean-
Variance approach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-
Ding Mean-Variance-Skewness approach (“BD”) with ε = 0.03 and δ = 0.0003.
The vertical axis stands for the skewness of portfolios, and the horizontal axis is for
variances.

FIGURE 8. The efficient frontiers of 14-line and 5-asset portfolios based on the
Markowitz Mean-Variance approach (“Traditional MV”), the Markowitz Mean-
Variance approach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-
Ding Mean-Variance-Skewness approach (“BD”) with ε = 0.01 and δ = 0.00005.
The vertical axis stands for the expected returns of portfolios, and the horizontal
axis is for variances.
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FIGURE 9. The 14-line and 5-asset portfolios skewness-variance graphs of the
Markowitz Mean-Variance approach (“Traditional MV”), the Markowitz Mean-
Variance approach with 5%-level CVaR constraint (“MV + CVaR”) and the Boyle-
Ding Mean-Variance-Skewness approach (“BD”) with ε = 0.01 and δ = 0.00005.
The vertical axis stands for the skewness of portfolios, and the horizontal axis is for
variances.

The maximum-entropy distribution has a density function f ∗(x) that solves the following opti-
mization problem:

(19)

max
f(x)

−
∫ b

a

f(x) log f(x) dx

subject to
∫ b

a

xif(x) dx = µi for i = 0, 1, . . . , n

and f(x) ≥ 0

Where µ0, µ1, . . . , µn are the given sequence of moments.
According to the left plot in Figure 10, 5% CVaR-like constraint makes the left tail shift to the

right, putting more mass on the right tail. However, the part around the mean decreases a little bit.
This partly explains why CVaR-like constraints approach deteriorates skewness in a small mediate
variance interval.

6. ROBUSTNESS CHECK

In this section, we compare the CVaR-like constraints approach with two more alternatives: the
CVaR optimization approach and the Mean-absolute Deviation (MAD) approach.

The CVaR optimization approach chooses CVaR as the objective function. It is proposed by
Krokhmal et al. (2002). They suggest minimizing the CVaR of loss portfolios. Therefore, for
return portfolios, we maximize CVaR to control risks and increase the likely of getting higher
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FIGURE 10. Maximum-entropy distribution (red curve) and the corresponding nor-
mal distribution (blue curve) with the same mean and variance of the portfolios
obtains by adding 5% CVaR-like constraint (Figure 6). The maximum-entropy dis-
tribution can be considered as the portfolio return distribution with 5% CVaR-like
constraint and the corresponding normal represents the distribution of traditional
Markowitz return. The left plot shows the probability density function (pdf) and the
right one shows the cumulative distribution function (CDF).

returns. The optimization problem (We call it “CVaR approach”) is:

(20)

Maximize CVaR(x, β)

subject to
k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µixi = µ0(x)

xi ≥ 0, i = 1, . . . , n.

If the portfolio returns are normally distributed, the Markowitz MV and CVaR will generate
the same efficient frontier. However, the solutions of CVaR approach may be far away from the
traditional MV frontier. In the case of non-normal, and especially non-symmetric distributions,
CVaR and MV portfolio optimization approaches may reveal significant differences (Rockafellar
and Uryasev, 2000).

For the mean-absolute Deviation (MAD) approach, instead of using variance, which is in the
quadratic form, one uses absolute value of the dispersion of the portfolio returns to measure risks:

MAD(R(x)) = E(|R(x)− E(R(x))|) = E

(∣∣∣∣∣
n∑

i=1

Rixi − E

(
n∑

i=1

Rixi

)∣∣∣∣∣
)

.
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The sample version obtained from the historical data rij is

MAD(R(x)) =
1

m

m∑
j=1

∣∣∣∣∣
n∑

i=1

rijxi −
n∑

i=1

µ̂ixi

∣∣∣∣∣ =
1

m

m∑
j=1

∣∣∣∣∣
n∑

i=1

(rij − µ̂i)xi

∣∣∣∣∣ ,
where

µ̂i =
1

m

m∑
j=1

rij.

Replacing the variance of the portfolio returns with this measure in the MV model, the portfolio
optimization problem based on the MAD approach is defined as follows:

Minimize
1

m

m∑
j=1

∣∣∣∣∣
n∑

i=1

(rij − µ̂i)xi

∣∣∣∣∣
subject to

k1∑
i=1

xi = 1

n∑
i=k1+1

xi = 1

n∑
i=1

µ̂ixi = µ0(x)

xi ≥ 0, i = 1, . . . , n.

We first solve the same portfolio optimization problems as those in Examples 1, 2 and 3 based
on the CVaR and MAD approaches respectively and plot their MV frontier and skewness-variance
graphs (which are not shown here).4 Then we compare the CVaR-like constraints method with
these two approaches.

Our results indicate that the CVaR approach is the least efficient one among these three in terms
of the mean-variance tradeoff especially in the low level variance range, but it offers the highest
skewness. Intuitively, as a risk management measure, CVaR tends to maximize the expected return
just below a given level of VaR, but not on the whole distribution. Therefore, it has more room to
reshape the tail to increase the skewness of portfolios but at some time it sacrifices more portfolio
efficiency. Whether it is an acceptable technique depends on the extent to which investors are
willing to deviate from the traditional MV frontier.

As for the MAD approach, it is always the least desirable in terms of securing higher skewness,
especially with higher variance portfolios. In all three examples, the MAD skewness-variance line
jumps up and down from the Markowitz line. These erratic results suggest that the MAD approach
is not a good method, at least with our examples. It implies that the MAD approach may be subject
to functional form bias and not a good risk surrogate (Lee, 1977).

After we compare the CVaR-like constraint approach with two more methods, we further con-
firm that it is a promising method for portfolio optimization and risk management, especially for
4The results are available upon request.
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investors who are interested in increasing their portfolio’s skewness while not deviating far from
the traditional MV frontier.

7. CONCLUSION

In this paper, we develop a new effective way, the CVaR-like constraints approach, to improve
the skewness of a MV portfolio. Specifically, we add one or more CVaR-like constraints to the
traditional portfolio optimization problem. This method is compared with the Boyle-Ding ap-
proach. Numerical analysis shows that the CVaR-like constraint approach is a more effective way
to improve the skewness given it does not deviate too much from the traditional MV frontier. Our
robustness check also shows its superiority over two other methods: the CVaR approach and the
MAD approach. Moreover, we have demonstrated that the CVaR-like constraints approach can
be used to successfully manage asset-liability portfolios of financial institutions such as insurance
companies.
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APPENDIX

Proof of CVaR Expression Transformation: Equation (9).
Call F (x, α, β) = α− 1

β
E((α−R(x))+). If we fix x, for λ ∈ (0, 1),

E(((λα1 + (1− λ)α2)−R(x))+) =

E(((λ(α1 −R(x)) + (1− λ)(α2 −R(x)))+) ≤
E((λ(α1 −R(x))+ + (1− λ)(α2 −R(x))+) =

λE((α1 −R(x))+) + (1− λ)E((α2 −R(x))+).

So E((α−R(x))+) is convex on α. The inequality above follows

max{a + b, 0} ≤ max{a, 0}+ max{b, 0}.

Since − 1
β
≤ 0 and the first term in F (x, α, β) is linear, the function F (x, α, β) is concave. Thus

the maximum can be found by differentiating F (x, α, β) with respect to α and then setting differ-
entiated function equal to zero.

δ

δα
F (x, α, β) = 1− 1

β
E(I(R(x) ≤ α) = 1− 1

β
P(R(x) ≤ α).

So the maximizer α∗ satisfies
1− 1

β
P(R(x) ≤ α∗) = 0,

or
P(R(x) ≤ α∗) = β.

That is, α∗ is the β-level VaR or α∗ = α(x, β). So

max
α

α− 1

β
E((α−R(x))+) = α(x, β)− 1

β
E((α(x, β)−R(x))+).

To finish, we notice

E((α(x, β)−R(x))+) = E((α(x, β)−R(x))+|R(x) ≥ α(x, β))P(R(x) ≥ α(x, β))

+E((α(x, β)−R(x))+|R(x) ≤ α(x, β))P(R(x) ≤ α(x, β)).

The first term on the right of the above equation is zero and the second term becomes

E((α(x, β)−R(x))+|R(x) ≤ α(x, β))P (R(x) ≤ α(x, β))

= E((α(x, β)−R(x))|R(x) ≤ α(x, β))β

= βα(x, β)− βE((R(x))|R(x) ≤ α(x, β))

= βα(x, β)− βCVaR(x, β).

Replacing it back, we get

max
α

α− 1

β
E((α−R(x))+) = α(x, β)− 1

β
(βα(x, β)− βCVaR(x, β)) = CVaR(x, β).

Proof of Skewness Condition of Equation (17).
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The skewness condition is difficult to handle. The usual techniques of portfolio optimization
will not handle such a non-linear constraint. Boyle and Ding (2006) replace this constraint by a set
of m linear inequalities. In order to increase the skewness, it is sufficient that

(21) [µ(x)j − µ(x)]3 ≥ [µ(x∗)j − µ(x∗)]3 for each period j = 1, 2, . . . ,m.

Each of these cubic constraints is replaced by a linear constraint. The linear constraint is based
on the approximation to t3 obtained joining the points (a, a3) and (b, b3) with a line. In the notation
of the paper a = t0 − ε and b = t0 + ε, where ε is a small positive number, and

t0 = µ(x∗)j − µ(x∗) = αj,

t = µ(x)j − µ(x) =
n∑

i=1

(rij − µi)xi.

This gives us

(22)

t3 ≈ a3 +
b3 − a3

b− a
(t− a) = a3 + [a2 + ab + b2](t− a)

= (t0 − ε)3 +
[
(t0 − ε)2 + (t0 − ε)(t0 + ε) + (t0 + ε)2(rij − µj)

]
(t− t0 + ε)

= (t0 − ε)3 + g(t0)(t− t0 + ε).

Therefore,

(23)

(
n∑

i=1

(rij − µi)xi

)3

≈ (αj − ε)3 + g(αj)

(
n∑

i=1

(rij − µi)xi − αj + ε

)

= (αj − ε)3 − (αj − ε)g(αj) + g(αj)
n∑

i=1

(rij − µi)xi,

where g(t0) = (t0− ε)2 +(t0− ε)(t0 + ε)+(t0 + ε)2. This is a good approximation when a < t < b

and |b− a| is small, i.e., when x satisfies the following inequalities:

(24) αj − ε <

n∑
i=1

(rij − µi)xi < αj + ε, j = 1, . . . ,m.

The constraints (16) are used in Boyle and Ding (2006). This implies that the mean of the new
portfolio cannot change more than +ε from the initial mean for each observation period j.

Provided the inequalities (16) hold for each j = 1, · · · , m, then from (22) we have

(25)

m∑
j=1

(
n∑

i=1

(rij − µi)xi

)3

≈
m∑

j=1

[
(αj − ε)3 − (αj − ε)g(αj)

]
+

m∑
j=1

g(αj)
n∑

i=1

(rij − µi)xi

= C +
n∑

i=1

cixi,
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where

C =
m∑

j=1

[
(αj − ε)3 − (αj − ε)g(αj)

]
and ci =

m∑
j=1

g(αj)(rij − µi).

The same analysis applies to the original portfolio x∗:

m∑
j=1

(
n∑

i=1

(rij − µi)x
∗
i

)3

≈ C +
n∑

i=1

cix
∗
i .
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