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Actuarial Present Values Accounting for Common Shock

Abstract: We study the problem of how a common disaster or life lengthening force affects two independent
lives. We specifically look at two exponential lives and determine different actuarial present values for the
effect of a common disaster, life lengthening force, and the effects of both the common disaster and life
lengthening.

Common Disaster

In this section we determine the probability of two individuals terminating due to either biological causes
specific to each life or a common disaster that affects both, whichever occurs first. Therefore, we can
separate causes of termination into both biological causes which are independent from each other and a
common disaster.

The probability that the biological component terminates the individual during (k, k + 1] is (1−qi)kqi =
pk

i qi, where pi = eui , qi = 1 − pi, and k = 0, 1, 2. The probability that life i survives one year through
biological causes is denoted by pi. Define Ki as the number of years individual i lives without terminating
due to biological causes.

Let’s say that a disaster occurs at time D. This disaster is independent of life i where i = 1, 2... We
will assume that individual lives are independent from each other and from the disaster D. The disaster and
lives will be modeled by geometric variables. The probability that the catastrophe occurs during (k, k + 1] is
(1− d)kd, k = 0, 1, 2, ..., where d is between zero and one. The larger d is, the sooner the disaster is expected
to occur. d is the chance the disaster will occur in any one year while (1 − d) is the chance that there is
no disaster in that year. To determine the probability that the disaster occurs after time n, we sum up the
probability from time n+1 to infinity.

P (D > n) =
∞∑

k=n+1

(1− d)kd

= d
(1− d)n+1

1− (1− d)
= (1− d)n+1.

KD
i = min(Ki, D) ,where Ki is defined as the the whole number of years lived by an individual i without

a disaster. The lives KD
1 and KD

2 are dependent through the common disaster. In absence of the common
disaster, K1 and K2 are independent.

To calculate P (KD
1 = n1,K

D
2 = n2) we look at

P (KD
1 > n1,K

D
2 > n2) = P (D > n1, D > n2,K1 > n1,K2 > n2)

= P (D > max(n1, n2)) ∗ P (K1 > n1) ∗ P (K2 > n2)

= (1− d)max(n1,n2)+1pn1+1
1 pn2+1

2 .

(1)

We then use the above formula to look at the tail probabilities to determine the probability mass function
denoted as P (KD

1 = n1,K
D
2 = n2). This is the same as looking at the box from n1 − 1, n2 − 1, n1 and n2

and subtracting off sections to determine P (KD
1 = n1,K

D
2 = n2).
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For n1, n2 = 0, 1, 2...

P (KD
1 = n1,K

D
2 = n2) = P (KD

1 > n1 − 1,KD
2 > n2 − 1)

− P (KD
1 > n1,K

D
2 > n2 − 1)

− P (KD
1 > n1 − 1,KD

2 > n2)

+ P (KD
1 > n1,K

D
2 > n2).

This is the same as

P (KD
1 = n1,K

D
2 = n2) = (1− d)max(n1−1,n2−1)+1p

(n1−1)+1
1 p

(n2−1)+1
2

− (1− d)max(n1,n2−1)+1pn1+1
1 p

(n2−1)+1
2

− (1− d)max(n1−1,n2)+1p
(n1−1)+1
1 pn2+1

2

+ (1− d)max(n1,n2)+1pn1+1
1 pn2+1

2

= (1− d)max(n1,n2)pn1
1 pn2

2

− (1− d)max(n1+1,n2)pn1+1
1 pn2

2

− (1− d)max(n1,n2+1)pn1
1 pn2+1

2

+ (1− d)max(n1+1,n2+1)pn1+1
1 pn2+1

2 .

We then look at specific cases for different values of n1, n2. For n1 = 0, 1, ..., n2 − 1, we have

P (KD
1 = n1,K

D
2 = n2) = (1− d)n2pn1

1 pn2
2

− (1− d)n2pn1+1
1 pn2

2

− (1− d)n2+1pn1
1 pn2+1

2

+ (1− d)n2+1pn1+1
1 pn2+1

2

= (1− d)n2pn1
1 pn2

2 [1− p1 − (1− d)p2 + (1− d)p1p2]

= (1− d)n2pn1
1 pn2

2 (1− p1)[1− (1− d)p2].

(2)

For n1 = n2(= 0, 1, ...), we have

P (KD
1 = n1, K

D
2 = n1) = (1− d)n1pn1

1 pn1
2

− (1− d)n1+1pn1+1
1 pn1

2

− (1− d)n1+1pn1
1 pn1+1

2

+ (1− d)n1+1pn1+1
1 pn1+1

2

= (1− d)n1pn1
1 pn1

2 [1− (1− d)p1 − (1− d)p2 + (1− d)p1p2)].

(3)
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For n1 = n2 + 1, n2 + 2, ...(n2 = 0, 1, ...), we have

P (KD
1 = n1,K

D
2 = n2) = (1− d)n1pn1

1 pn2
2

− (1− d)n1+1pn1+1
1 pn2

2

− (1− d)n1pn1
1 pn2+1

2

+ (1− d)n1+1pn1+1
1 pn2+1

2

= (1− d)n1pn1
1 pn2

2 [1− (1− d)p1 − p2 + (1− d)p1p2]

= (1− d)n1pn1
1 pn2

2 (1− p2)[1− (1− d)p1].

(4)

For additional verification see Appendix A.

Actuarial Present Value of Common Catastrophe

The joint life actuarial present value of one dollar payable at the end of the year of the first of either life
x’s or life y’s death is denoted by Axy. One would want this form of insurance to protect against the death
of the wage earner. It is important to note that life y does not necessarily need to live until the end of the
year. Also, life x corresponds to probabilities based off of individual 1 and life y corresponds to probabilities
based off of individual 2.

In general the insurance is represented as

Axy =
∞∑

k=0

vk+1
kpxyqx+k:y+k.

kpxy is determined by the survival function SKD(x),KD(y)(n1, n2).

SKD(x),KD(y)(n1, n2) = P (KD
1 > n1,K

D
2 > n2)

= P (K(x) > n1 and K(y) > n2 and D > max(n1, n2))

= (1− d)max(n1,n2)+1pn1+1
1 pn2+1

2 .

Therefore using the above equations for the survival function we can determine kpxy

kpxy =
s(n1 + k, n2 + k)

s(n1, n2)

=
(1− d)max(n1+k,n2+k)+1pn1+k+1

1 pn2+k+1
2

(1− d)max(n1,n2)+1pn1+1
1 pn2+1

2

=
(1− d)max(n1+k,n2+k)+1pk

1pk
2

(1− d)max(n1,n2)+1

= (1− d)kpk
1pk

2 .

Hence,
qx+k:y+k = 1− px+k:y+k = 1− (1− d)p1p2.

Scaling by the starting ages to determine tpxy works because the random variables KD
1 ,KD

2 are still
exponential in nature. Alternatively, we could calculate

kpxyqx+k:y+k = P (KD
1 > k − 1,KD

2 > k − 1)− P (KD
1 > k, KD

2 > k)

= (1− d)kpk
1pk

2 − (1− d)k+1pk+1
1 pk+1

2 .
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This conclusion we have already seen in our previous calculation.
We can also use the probabilities developed in the previous section to check our answer.

qx+k:y+k = P (KD
1 = 0,KD

2 > 0) + P (KD
1 > 0,KD

2 = 0) + P (KD
1 = 0,KD

2 = 0).

Now using Equation (1)

P (KD
1 = 0,KD

2 > 0) = P (KD
1 ≥ 0, KD

2 > 0)− P (KD
1 > 0,KD

2 > 0)

= P (KD
2 > 0)− P (KD

1 > 0,KD
2 > 0)

= (1− d)p1 − (1− d)p1p2.

Similarly,
P (KD

1 > 0,KD
2 = 0) = (1− d)p2 − (1− d)p1p2.

Therefore, from Equation (4)

P (KD
1 = 0, KD

2 = 0) = 1− (1− d)p1 − (1− d)p2 + (1− d)p1p2.

Insert the required formulae into qx+k:y+k

qx+k:y+k = (1− d)p1 − (1− d)p1p2 + (1− d)p2 − (1− d)p1p2 + 1− (1− d)p1 − (1− d)p2 + (1− d)p1p2

= 1− (1− d)p1p2

= 1− px+k:y+k.

We can now determine Axy.

Axy =
∞∑

k=0

vk+1(1− d)kpk
1pk

2 [1− (1− d)p1p2]

=
∞∑

k=0

vk+1(1− d)kpk
1pk

2 − vk+1(1− d)k+1pk+1
1 pk+1

2

=
v

1− v(1− d)p1p2
− v(1− d)p1p2

1− v(1− d)p1p2

= v
1− (1− d)p1p2

1− v(1− d)p1p2
.

It is important to note that the smaller d is the greater the time until an individual’s life is affected by
the common disaster. When d = 0, then

Axy = v
1− p1p2

1− vp1p2
.

When d = 1, then

Axy = v
1
1

= v.

We can also calculate annuity values using 1 = räxy + Axy. Where r = i
1+i usually denoted by discount

d. Therefore, äxy = 1−Axy

r .

The last survivor status is payable at the end of the year upon the last death of either life x or life y.
The actuarial present value of the last survivor status is denoted by Axy.

Axy = Ax + Ay −Axy.
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To determine this status we first need to develop the actuarial present values for lives x and y individually
with the effect of the common disaster. The actuarial present value of one dollar payable at the end of the
year is

Ax =
∞∑

k=0

vk+1
kpxqx+k.

Therefore, we need

kpx =
s(n1 + k)

s(n1)

=
(1− d)n1+kpn1+k

1

(1− d)n1pn1
1

= (1− d)kpk
1 .

and

kqx = 1− (1− d)kpk
1 .

Now,

Ax =
∞∑

k=o

vk+1(1− d)kpk
1 [1− (1− d)p2]

=
∞∑

k=0

vk+1(1− d)kpk
1 − vk+1(1− d)k+1pk+1

1

=
v

1− v(1− d)p1
− v(1− d)p1

1− v(1− d)p1

= v
1− (1− d)p1

1− v(1− d)p1
.

Likewise,

Ay = v
1− (1− d)p2

1− v(1− d)p2
.

When d = 0, we arrive at Ax with no disaster effect.

Ax = v

[
1− p1

1− vp1

]
= v

[
q1

1− vp1

]
.

Therefore, inserting the required formulae into Axy, we arrive at

Axy = v

[
1− (1− d)p1

1− v(1− d)p1
+

1− (1− d)p2

1− v(1− d)p2
− 1− (1− d)p1p2

1− v(1− d)p1p2

]
.

When d = 0, then we arrive at Axy with no disaster effect.

Axy = v

[
1− p1

1− vp1
+

1− p2

1− vp2
− 1− p1p2

1− vp1p2

]
.

When d = 1, then the disaster definitely occurs and the payment is made at the end of the first period.

Axy = v

[
1
1

+
1
1
− 1

1

]
= v.
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Life Lengthening

In this section we determine the probability of two individuals terminating due to biological causes specific
to each life while a life lengthening force lengthens both lives. Therefore, we can separate the two forces
acting on the lives into a biological aspect which seeks to terminate life and acts independent of the lives and
a lengthening force which seeks to lengthen life. The life lengthening force is a way to separately account for
decreased probability of biological death. For example, when looking at a group of smokers and non-smokers,
one could consider those who do not smoke to have a lengthening force acting upon them, the fact that they
do not smoke.

Define Ki as in the previous sections where the individual lives are independent and geometrically
distributed. Let’s assume that L is a lengthening force which can affect an individual by lengthening his or
her life. Suppose that P (L = k) = lk(1− l) where k = 0, 1, 2..., 0 < l < 1. We assume that the lengthening
force is a geometric random variable. l is the chance that the life continues. Therefore, the larger l is, the
larger the probability of a life continuing due to lengthening. (1− l) is the chance that the lengthening will
fail in any one year. Define KL

i = Ki + L where i = 1, 2, .... KL
i are the whole number of years lived by

individual i with lengthening. The lives KL
i are dependent due to the lengthening force acting on both.

The PGF is the probability generating function. Knowing the probability generating function is equiv-
alent to knowing the probability mass function which we wish to develop. The PGF can be defined as

PGF (x, y) = E
[
xKL

1 yKL
2

]

= E
[
xK1+LyK2+L

]

= E
[
xK1

]
E

[
yK2

]
E

[
(xy)L

]

=
∞∑

k=0

xkpk
1q1

∞∑

k=0

ykpk
2q2

∞∑

k=0

(xy)k(1− l)lk

=
q1

1− p1x

q2

1− p2y

(1− l)
1− lxy

.

Now sum over the partial derivatives at x, y = 0 to solve for the probability mass function

∂n1+n2P (0, 0)
∂yn2∂xn1

= n1!n2!P (KL
1 = n1,K

L
2 = n2)

=
∂n2

∂yn2

[
∂n1P (x, y)

∂xn1

]
|x=y=0.

Split into separate cases

=
∂n2

∂yn2

[( ∞∑

k=0

ykpk
2q2

)
n1∑

m=0

n1!
(n1 −m)!m!

∂m

∂xm

( ∞∑

k=0

xkpk
1q1

)
∂n1−m

∂xn1−m

( ∞∑

k=0

(xy)klk(1− l)

)]
|x=y=0

Solve the last summations

=
∂n2

∂yn2

[( ∞∑

k=0

ykpk
2q2

)
n1∑

m=0

n1!
(n1 −m)!m!

m!pm
1 q1

∞∑

k=n1−m

k(k − 1)...(k − n1 + m + 1)xk−n1+myklk(1− l)

]
|x=y=0
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=
∂n2

∂yn2

[( ∞∑

k=0

ykpk
2q2

)
n1∑

m=0

n1!
(n1 −m)!m!

m!pm
1 q1(n1 −m)!yn1−mln1−m(1− l)

]
|y=o

=
∂n2

∂yn2

[( ∞∑

k=0

ykpk
2q2

)
n1∑

m=0

n1!pm
1 q1y

n1−mln1−m(1− l)

]
|y=0

Split into cases again

=
n2∑

r=0

n2!
(n2 − r)!r!

∂r

∂yr

( ∞∑

k=0

ykpk
2q2

)
∂n2−r

∂yn2−r

(
n1∑

m=0

n1!pm
1 q1l

n1−m(1− l)yn1−m

)
|y=0

=
n2∑

r=0

n2!
(n2 − r)!r!

r!pr
2q2

∂n2−r

∂yn2−r

n1∑
m=0

n1!pn1−m
1 q1l

m(1− l)ym|y=0

Simplify,

=
n2∑

r=0

n2!
(n2 − r)!r!

(n2 − r)!pn2−r
2 q2

∂r

∂yr

n1∑
m=0

n1!pn1−m
1 q1l

m(1− l)ym|y=0

=
n2∑

r=0

n2!
(n2 − r)!r!

(n2 − r)!pn2−r
2 q2[n1!pn1−r

1 q1l
r(1− l)r!1r,n1 ]

Reduce the summations

=
min(n1,n2)∑

r=0

n1!n2!pn2−r
2 q2P

n1−r
1 q1l

r(1− l)

= n1!n2!q1q2(1− l)
min(n2,n1)∑

r=0

pn1−r
1 pn2−r

2 lr

= n1!n2!q1q2(1− l)
pn1
1 pn2

2 − P
n1−min(n1,n2)−1
1 p

n2−min(n1,n2)−1
2 lmin(n1,n2)+1

1− l
p1p2

Therefore,

P (KL
1 = n1,K

L
2 = n2) = q1q2(1− l)

pn1+1
1 pn2+1

2 − p
n1−min(n1,n2)
1 p

n2−min(n1,n2)
2 lmin(n1,n2)+1

p1p2 − l
. (5)

For n1 ≤ n2(n1 = 0, 1, ...n2), we have

P (KL
1 = n1,K

L
2 = n2) = q1q2(1− l)

pn1+1
1 pn2+1

2 − pn1−n1
1 pn2−n1

2 ln1+1

p1p2 − l

= q1q2(1− l)
pn1+1
1 pn2+1

2 − pn2−n1
2 ln1+1

p1p2 − l
.

(6)

For n1 = n2 + 1, n2 + 2, ...

P (KL
1 = n1,K

L
2 = n2) = q1q2(1− l)

pn1+1
1 pn2+1

2 − pn1−n2
1 ln2+1

p1p2 − l
. (7)

For additional verification see Appendix B.
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Actuarial Present Value of Life Lengthening

The joint life actuarial present value of one dollar payable at the end of the year of the first of either life
x’s or life y’s death is denoted by Axy. One would want this form of insurance to protect against the death
of the wage earner. It is important to note that life y does not necessarily need to live until the end of the
year.

In general the insurance is represented as

Axy =
∞∑

k=0

vk+1
kpxyqx+k:y+k.

Now, if we try to develop kpxy by scaling by the starting age as we did for the common disaster we
arrive at

kpxy =
(1− l)(p1p2)n+k+2 − (1− p1p2)ln+k+2

(1− l)(p1p2)n+2 − (1− p1p2)ln+2
.

With life lengthening, the starting age, for example the marriage date, of the lengthening force is very
important. kpxy is not memoryless.

For simplicity we will determine kpxyqx+k:y+k = P (KL
1 > k − 1,KL

2 > k − 1) − P (KL
1 > k,KL

2 > k).
Therefore, we need to determine P (KL

1 > n,KL
2 > n). Use Equation (5) in the previous section. For n1 > n2

P (KL
1 > n1,K

L
2 > n2) =

∞∑

k2=n2+1

∞∑

k1=n1+1

P (KL
1 = k1,K

L
2 = k2)

=
∞∑

n1+1≤k1≤k2

P (KL
1 = k1,K

L
2 = k2) +

∞∑

n2+1≤k2≤k1

P (KL
1 = k1,K

L
2 = k2)

=
∞∑

k2=n1+1

k2∑

k1=n1+1

q1q2(1− l)
pk1+1
1 pk2+1

2 − pk2−k1
2 lk1+1

p1p2 − l

+
∞∑

k1=n1+1

k1−1∑

k2=n2+1

q1q2(1− l)
pk1+1
1 pk2+1

2 − pk1−k2
1 lk2+1

p1p2 − l

Split into cases

=
q1q2(1− l)
p1p2 − l

[ ∞∑

k2=n1+1

pk2+1
2

k2∑

k1=n1+1

pk1+1
1 −

∞∑

k2=n1+1

pk2
2 l

k2∑

k1=n1+1

(
l

p2

)k1

+
∞∑

k1=n1+1

pk1+1
1

k1−1∑

k2=n2+1

pk2+1
2 −

∞∑

k1=n1+1

pk1
1 l

k1−1∑

k2=n2+1

(
l

p1

)k2
]

Solve the inner summations

=
q1q2(1− l)
p1p2 − l




∞∑

k2=n1+1

pk2+1
2

pn1+2
1 − pk2+2

1

1− p1
−

∞∑

k2=n1+1

pk2
2 l

(
l

p1

)n1+1

−
(

l
p1

)k2+2

1− l
p2

+
∞∑

k1=n1+1

pk1+1
1

pn2+2
2 − pk1+1

2

1− p2
−

∞∑

k1=n1+1

pk
1 l

(
l

p1

)n2+1

−
(

l
p1

)k1

1− l
p1



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=
q1q2(1− l)
p1p2 − l

[
1
q1

pn1+2
1 p2

∞∑

k2=n1+1

pk2
2 − 1

q1
p2p

2
1

∞∑

k2=n1+1

(p1p2)k2

− p2l

p2 − l

(
l

p2

)n1+1 ∞∑

k2=n1+1

pk2
2 +

p2l

p2 − l

l

p2

∞∑

k2=n1+1

lk2

+
1
q2

pn2+2
2 p1

∞∑

k1=n1+1

pk1
1 − 1

q2
p1p2

∞∑

k1=n1+1

(p1p2)k1

− p1l

p1 − l

(
l

p1

)n2+1 ∞∑

k1=n1+1

pk1
1 +

p1l

p1 − l

∞∑

k1=n1+1

lk1

]

(8)

Solve the last summations

=
q1q2(1− l)
p1p2 − l

[
1
q1

pn1+2
1 p2

pn1+1
2

1− p2
− 1

q1
p2p

2
1

(p1p2)n1+1

1− p1p2
− p2l

p2 − l

(
l

p2

)n1+1
pn1+1
2

1− p2
+

l2

p2 − 1
ln1+1

1− l

+
p1p

n2+2
2

q2

pn1+1
1

1− p1
− p1p2

q2

(p1p2)n1+1

1− p1p2
− p1l

p1 − l

(
l

p1

)n2+1
pn1+1
1

1− p1
+

p1l

p1 − l

ln1+1

1− l

]

Simplify,

=
q1q2(1− l)
p1p2 − l

[
pn1+2
1 pn1+2

2

q1q2
− pn1+3

1 pn1+2
2

q1(1− p1p2)
− p2l

n1+2

q2(p2 − l)
+

ln1+3

(1− l)(p2 − l)

+
pn1+2
1 pn2+2

2

q1q2
− pn1+2

1 pn1+2
2

q2(1− p1p2)
− p1l

n2+2

q1(p1 − l)
+

p1l
n1+2

(1− l)(p1 − l)

] (9)

=
q1q2(1− l)
p1p2 − l

[
pn1+2
1 pn2+2

2 (1 + pn1−n2
2 )

q1q2
− (1− p2)pn1+3

1 pn1+2
2 + (1− p1)pn1+2

1 pn1+2
2

(1− l)(p1 − l)(p2 − l)

− (1− p1)p2(p1 − l)ln1+2 + (1− p2)p1(p2 − l)ln2+2

q1q2(p1 − l)(p2 − l)
+

(p1 − l)ln1+3 + (p2 − l)p1l
n1+2

(1− l)(p1 − l)(p2 − l)

]

Group like terms

=
q1q2(1− l)
p1p2 − l

[
pn1+2
1 pn2+2

2 (1 + pn1−n2
2 )

q1q2
− pn1+2

1 pn1+2
2 (1− p1p2)

q1q2(1− p1p2)

− p2l
n1+2

q2(p2 − l)
− p1l

n2+2

q1(p1 − l)
+

ln1+2(p1p2 − l2)
(1− l)(p1 − l)(p2 − l)

]

=
q1q2(1− l)
p1p2 − l

[
pn1+2
1 pn2+2

2

q1q2
− p2l

n1+2

q2(p2 − l)
− p1l

n2+2

q1(p1 − l)
+

ln1+2(p1p2 − l2)
(1− l)(p1 − l)(p2 − l)

]
.

For n2 > n1

=
q1q2(1− l)
p1p2 − l

[
pn1+2
1 pn2+2

2

q1q2
− p1l

n2+2

q1(p1 − l)
− p2l

n1+2

q2(p2 − l)
+

ln2+2(p1p2 − l2)
(1− l)(p1 − l)(p2 − l)

]
.

For n1 = n2 = n

P (KL
1 > n, KL

2 > n) =
∞∑

n+1≤k1≤k2

P (KL
1 = k1,K

L
2 = k2) +

∞∑

n+1≤k2≤k1

P (KL
1 = k1,K

L
2 = k2)

=
∞∑

k2=n+1

k2∑

k1=n+1

q1q2(1− l)
pk1+1
1 pk2+1

2 − pk2−k1
2 lk1+1

p1p2 − l

+
∞∑

k1=n+2

k1−1∑

k2=n+1

q1q2(1− l)
pk1+1
1 pk2+1

2 − pk1−k2
1 lk2+1

p1p2 − l

10



From Equation (8) and Equation (9)

=
q1q2(1− l)
p1p2 − l

[
pn+2
1 pn+2

2

q1q2
− pn+3

1 pn+2
2

q1(1− p1p2)
− p2l

n+2

q2(p2 − l)
+

ln+3

(1− l)(p2 − l)

+
1
q2

pn+2
2 p1

∞∑

k1=n+2

pk1
1 − 1

q2
p1p2

∞∑

k1=n1+2

(p1p2)k1

− p1l

p1 − l

(
l

p1

)n+1 ∞∑

k1=n+2

pk1
1 +

p1l

p1 − l

∞∑

k1=n+2

lk1

]

=
q1q2(1− l)
p1p2 − l

[
pn+2
1 pn+2

2

q1q2
− pn+3

1 pn+2
2

q1(1− p1p2)
− p2l

n+2

q2(p2 − l)
+

ln+3

(1− l)(p2 − l)

+
pn+3
1 pn+2

2

q1q2
− pn+3

1 pn+3
2

q2(1− p1p2)
− p2

1l
n+2

q1(p1 − l)
+

p1l
n+3

(1− l)(p1 − l)

]

Group over common denominators

=
q1q2(1− l)
p1p2 − l

[
(p1p2)n+2(1 + p1)

q1q2
− (1− p2)pn+3

1 pn+2
2 + (1− p1)pn+3

1 pn+3
2

q1q2(1− p1p2)

−p2(1− p1)(p1 − l) + p2
1(1− p2)(p2 − l)

q1q2(p1 − l)(p2 − l)
ln+2 +

(p1 − l) + p1(p2 − l)
(1− l)(p1 − l)(p2 − l)

ln+3

]

=
q1q2(1− l)
p1p2 − l

[
(p1p2)n+2(1 + p1)

q1q2
− pn+3

1 pn+2
2 − pn+4

1 pn+3
2

q1q2(1− p1p2)

−p2(p1 − p2
1 − l + p1l) + p2

1(p2 − p2
2 − l + p2l)

q1q2(p1 − l)(p2 − l)
ln+2 +

p1 − l + p1p2 − p1l

(1− l)(p1 − l)(p2 − l)
ln+3

]

Simplify numerators

=
q1q2(1− l)
p1p2 − l

[
(p1p2)n+2(1 + p1)

q1q2
− (p1p2)n+2p1(1− p1p2)

q1q2(1− p1p2)
− p1p2(1− p1p2)ln+2

q1q2(p1 − l)(p2 − l)

−−p2 + p1p2 − p2
1 + p2p

2
1

q1q2(p1 − l)(p2 − l)
ln+3 +

p1 + p1p2

(1− l)(p1 − l)(p2 − l)
ln+3 − 1 + p1)l

(1− l)(p1 − l)(p2 − l)
ln+3

]

=
q1q2(1− l)
p1p2 − l

[
(p1p2)n+2

q1q2
− p1p2(1− p1p2)ln+2

q1q2(p1 − l)(p2 − l)(1− l)

+
p1p2(1− p1p2)ln+3

q1q2(p1 − l)(p2 − l)(1− l)
+

p2 − p1p2 + p2
1 − p2

1p2

q1q2(p1 − l)(p2 − l)(1− l)
ln+3

− p2 − p1p2 + p2
1 − p2

1p2

q1q2(p1 − l)(p2 − l)(1− l)
ln+4 +

p1(1 + p2)(1− p1)(1− p2)
q1q2(p1 − l)(p2 − l)(1− l)

ln+3

− (1 + p1)(1− p1)(1− p2)
q1q2(p1 − l)(p2 − l)(1− l)

ln+4

]

Cancel terms

=
1− l

p1p2 − l

[
(p1p2)n+2 − p1p2(1− p1p2)ln+2

(p1 − l)(p2 − l)(1− l)

+
p1p2(1− p1p2) + p2 − p1p2 + p2

1 − p2
1p2 + p1(1− p1)(1− p2

2)
(1− l)(p1 − l)(p2 − l)

ln+3

−p2 − p1p2 + p2
1 − p2

1p2 + (1− p2)(1− p2
1)

(1− l)(p1 − l)(p2 − l)
ln+4

]
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=
1− l

p1p2 − l

[
(p1p2)n+2 − p1p2(1− p1p2)ln+2

(p1 − l)(p2 − l)(1− l)

+
p1 + p2 − p1p2(p1 + p2)
(p1 − l)(p2 − l)(1− l)

ln+3 − 1− p1p2

(p1 − l)(p2 − l)(1− l)
ln+4

]

Simplify,

=
1− l

p1p2 − l

[
(p1p2)n+2 − (1− p1p2)ln+2

(1− l)(p1 − l)(p2 − l)
(
p1p2 − (p1 + p2)l + l2

)]

=
1− l

p1p2 − l

[
(p1p2)n+2 − (1− p1p2)ln+2

(1− l)

]

=
1

p1p2 − l

[
(1− l)(p1p2)n+2 − (1− p1p2)ln+2

]
.

For n = 0, we have

=
1

p1p2 − l

[
(1− l)(p1p2)2 − (1− p1p2)l2

]

=
1

p1p2 − l

[
(p1p2)2 − (p1p2)2l − l2 + (p1p2)l2

]

=
1

p1p2 − l
[p1p2l(l − p1p2) + (p1p2 − l)(p1p2 + l)]

= p1p2 + l − p1p2l

= 1− (1− l)(1− p1p2).

Again this is the same as P (KL
1 > 0,KL

2 > 0).

P (KL
1 > 0,KL

2 > 0) = 1− P (KL
1 = 0 or KL

2 = 0)

= 1− [
P (KL

1 = 0,KL
2 > 0) + P (KL

1 > 0,KL
2 = 0) + P (KL

1 = 0,KL
2 = 0)

]

= 1− [(1− l)(1− p1)p2 + (1− l)p1(1− p2) + (1− l)(1− p1)(1− p2)]

= 1− (1− l) [p2 − p1p2 + p1 − p1p2 + 1− p1 − p2 + p1p2]

= 1− (1− l)(1− p1p2).
Now, inserting the required formulae into kpxyqx+k:y+k

kpxyqx+k:y+k = P (KL
1 > k − 1,KL

2 > k − 1)− P (KL
1 > k, KL

2 > k)

=
1

p1p2 − l

[
(1− l)(p1p2)k+1 − (1− p1p2)lk+1 − (1− l)(p1p2)k+2 + (1− p1p2)lk+2

]

=
1

p1p2 − l

[
(1− l)

(
(p1p2)k+1 − (p1p2)k+2

)− (1− p1p2)
(
lk+1 − lk+2

)]

=
1

p1p2 − l

[
(1− l)(p1p2)k+1(1− p1p2)− (1− p1p2)lk+1(1− l)

]

=
(1− l)(1− p1p2)

p1p2 − l

[
(p1p2)k+1 − lk+1

]
.

Inserting the required formulae into Axy, we arrive at

Axy =
(1− l)(1− p1p2)

p1p2 − l

∞∑

k=0

vk+1
[
(p1p2)k+1 − lk+1

]

=
(1− l)(1− p1p2)

p1p2 − l

[
vp1p2

1− vp1p2
− vl

1− vl

]

=
v(1− l)(1− p1p2)

p1p2 − l

[
p1p2

1− vp1p2
− l

1− vl

]
.
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It is important to note that the smaller l is the less the lives are affected by the lengthening. When
l = 0, or when there is no lengthening, we arrive at the same actuarial present value as when d = 0.

Axy = v
1− p1p2

p1p2
∗ p1p2

1− vp1p2

= v
1− p1p2

1− vp1p2
.

When l = 1, then we arrive at Axy = 0. The lengthening will cause you to live forever.

We can also calculate annuity values using 1 = räxy + Axy. Where r = i
1+i usually denoted by discount

d. Therefore, äxy = 1−Axy

r .

The last survivor status is payable at the end of the year upon the last death of either life x or life y.
The actuarial present value of the last survivor status is denoted by Axy.

Axy = Ax + Ay −Axy.

To determine this status we first need to develop the actuarial present values for lives x and y individually
with the effect of the life lengthening. The actuarial present value of one dollar payable at the end of the
year is

Ax =
∞∑

k=0

vk+1
kpxqx+k.

In determining kpxqx+k = P (KL
1 > k − 1)− P (KL

1 > k) we need P (KL
1 > n).

P (L = k) = lk(1− l).

P (K1 = k) = pk
1q1.

Hence,

P (L + K1 = k) =
k∑

m=0

lm(1− l)pk−m
1 q1 = (1− l)pk

1q1

1− lk+1 q1
p1

1− l
p1

.

and

P (KL
1 > n) =

∞∑
r=n+1

(1− l)pr
1q1

1− lr+1 q1
p1

1− l
p1

=
(1− l)q1

1− l
p1

[ ∞∑
r=n+1

pr
1 − q1

∞∑
r=n+1

lr+1pr−1
1

]

=
(1− l)q1

1− l
p1

[
pn+1
1

1− p1
− q1

ln+2pn
1

1− lp1

]
.

(10)

Therefore, using Equation (10)

kpxqx+k =
(1− l)q1

1− l
p1

[
pk
1

1− p1
− q1

lk+1pk−1
1

1− lp1
− pk+1

1

1− p1
+ q1

lk+2pk
1

1− lp1

]

=
(1− l)q1

1− l
p1

[
pk
1 − q1l

k+1pk−1
1

]
.

13



Inserting the required formulae into Ax, we arrive at

Ax =
(1− l)q1

1− l
p1

∞∑

k=o

vk+1
[
pk
1 − q1l

k+1pk−1
1

]

=
(1− l)q1

1− l
p1

[
v

1− vp1
− q1

v l
p1

1− vlp1

]

= v
(1− l)q1

p1 − l

[
p1

1− vp1
− lq1

1− vlp1

]
.

Similarly,

Ay = v
(1− l)q2

p2 − l

[
p2

1− vp2
− lq2

1− vlp2

]
.

When l = 0, we reach the same conclusion as when d = 0.

Ax = vq1
1

1− vp1
.

Finally,

Axy = v

[
(1− l)q1

p1 − l

(
p1

1− vp1
− lq1

1− vlp1

)

+
(1− l)q2

p2 − l

(
p2

1− vp2
− lq2

1− vlp2

)

− (1− l)(1− p1p2)
p1p2 − l

(
p1p2

1− vp1p2
− l

1− vl

)]
.

Since Axy is linear when l = 0 and d = 0, we arrive at the same conclusions as before.

Common Disaster and Life Lengthening

In this section we determine the probability of two individuals terminating due to biological causes or a
common disaster while having their lives lengthened by a common lengthening force. Therefore, we can look
at three separate forces acting on each life, the biological, the common disaster, and the life lengthening.
The individual lives are independent of each other,however, once the common disaster and life lengthening
force are accounted for the individuals are dependent due to the disaster and lengthening which are acting
on both. By using both the common disaster and the life lengthening one can account for those factors both
increasing and decreasing biological mortality.

We will use the same definitions used to develop the separate cases involving a common disaster and life
lengthening in the previous two sections. We will define (KL

i )D as the number of years lived by an individual
i with the life lengthening force while being subjected to a common disaster.

(KL
1 )D = min(KL

1 , D) = min(K1 + L,D).

Therefore,
P (KLD

1 > n1,K
LD
2 > n2) = P (D > n1, D > n2,K

L
1 > n1,K

L
2 > n2)

= P (D > max(n1, n2)) ∗ P (KL
1 > n1,K

L
2 > n2)

= (1− d)max(n1,n2)+1 ∗ P (KL
1 > n1,K

L
2 > n2).

As in the previous sections we can set n1 = n2 = n since their initial ages do not matter. Only the start
of the life lengthening matters which we will assume starts at n.

Hence,

P (KLD
1 > n, KLD

2 > n) = (1− d)n+1 ∗ 1
p1p2 − l

[
(1− l)(p1p2)n+2 − (1− p1p2)ln+2

]
. (11)
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Actuarial Present Value of Common Disaster and Life Lengthening

The joint life actuarial present value of one dollar payable at the end of the year of the first of either life x’s
or life y’s death is denoted by Axy. One would want this form of insurance to protect against the death of
the wage earner. It is important to note that life y does not necessarily need to live until the end of the year.

In general the insurance is represented as

Axy =
∞∑

k=0

vk+1
kpxyqx+k:y+k.

Once again we need kpxyqx+k:y+k which we determine using Equation (11).

kpxyqx+k:y+k = P (KLD
1 > k − 1,KLD

2 > k − 2)− P (KLD
1 > k, KLD

2 > k)

=
1

p1p2 − l

[
(1− l)(1− d)k(p1p2)k+1 − (1− p1p2)(1− d)klk+1

−(1− l)(1− d)k+1(p1p2)k+2 + (1− p1p2)(1− d)k+1lk+2
]

=
1

p1p2 − l

[
(1− l)(1− d)k(p1p2)k+1(1− (1− d)p1p2)

−(1− p1p2)(1− d)klk+1(1− (1− d)l)
]
.

Inserting the required formulae into Axy, we arrive at

Axy =
1

p1p2 − l

[
(1− l)(1− (1− d)p1p2)

∞∑

k=0

vk+1(1− d)k(p1p2)k+1

− (1− p1p2)(1− (1− d)l)
∞∑

k=0

vk+1(1− d)klk+1

]

=
1

p1p2 − l

[
(1− l)(1− (1− d)p1p2)

vp1p2

1− v(1− d)p1p2
− (1− p1p2)(1− (1− d)l)

vl

1− v(1− d)l

]
.

When d = 0, you arrive at the actuarial present value with only the lengthening.

Axy =
1

p1p2 − l

[
(1− l)(1− p1p2)

vp1p2

1− vp1p2
− (1− p1p2)(1− l)

vl

1− vl

]
.

When l = 0, you arrive at the actuarial present value with only the disaster.

Axy =
1

p1p2

[
(1− (1− d)p1p2)

vp1p2

1− v(1− d)p1p2

]
= v

[
1− (1− d)p1p2

1− v(1− d)p1p2

]
.

We can also calculate annuity values using 1 = räxy + Axy. Where r = i
1+i usually denoted by discount

d. Therefore, äxy = 1−Axy

r .

The last survivor status is payable at the end of the year upon the last death of either life x or life y.
The actuarial present value of the last survivor status is denoted by Axy.

Axy = Ax + Ay −Axy.

To determine this status we first need to develop the actuarial present values for lives x and y individually
with the effect of the common disaster and life lengthening. The actuarial present value of one dollar payable
at the end of the year is

Ax =
∞∑

k=0

vk+1
kpxqx+k.
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Therefore, we need

kpxqx+k = P (KLD
1 > k − 1)− P (KLD

1 > k).

Now,

P (KLD
1 > n) = P (D > n, KL

1 > n) = (1− d)n+1 (1− l)q1

1− l
p1

[
pn+1
1

1− p1
− q1

ln+2pn
1

1− lp1

]
.

Therefore,

kpxqx+k =
(1− l)q1

1− l
p1

[
(1− d)kpk

1

1− p1
− q1

(1− d)klk+1pk−1
1

1− lp1

− (1− d)k+1pk+1
1

1− p1
− q1

(1− d)k+1lk+2pk
1

1− lp1

]

=
(1− l)q1

1− l
p1

[
(1− d)kpk

1

1− p1
(1− (1− d)p1)− q1

1− lp1
(1− d)klk+1pk−1

1 (1− (1− d)lp1)
]

=
(1− l)q1

p1 − l

[
p1(1− d)kpk

1

q1
(1− (1− d)p1)− q1p1

1− lp1
(1− d)klk+1pk−1

1 (1− (1− d)lp1)
]

.

Inserting the required formulae into Ax, we arrive at

Ax =
(1− l)q1

p1 − l

[
p1

q1
(1− (1− d)p1)

∞∑

k=0

vk+1(1− d)kpk
1

− q1(1− (1− d)lp1)
1− lp1

∞∑

k=0

vk+1lk+1(1− d)kpk
1

]

=
(1− l)q1

p1 − l

[
p1

q1
(1− (1− d)p1)

v

1− v(1− d)p1
− q1(1− (1− d)lp1)

1− lp1
∗ vl

1− v(1− d)lp1

]
.

Similarily,

Ay =
(1− l)q2

p2 − l

[
p2

q2
(1− (1− d)p2)

v

1− v(1− d)p2
− q2(1− (1− d)lp2)

1− lp2
∗ vl

1− v(1− d)lp2

]
.

When d = 0, it simplifies to Ax with only lengthening.

Ax =
(1− l)q1

p1 − l

[
p1

q1
(1− p1)

v

1− vp1
− q1(1− lp1)

1− lp1

vl

1− vlp1

]
.

When l = 0, it simplifies to Ax with only the disaster.

Ax =
q1

p1

[
p1

q1
(1− (1− d)p1)

v

1− v(1− d)p1

]
.

Therefore,

Axy =
(1− l)q1

p1 − l

[
p1

q1
(1− (1− d)p1)

v

1− v(1− d)p1
− q1(1− (1− d)lp1)

1− lp1

vl

1− v(1− d)lp1

]

+
(1− l)q2

p2 − l

[
p2

q2
(1− (1− d)p2)

v

1− v(1− d)p2
− q2(1− (1− d)lp2)

1− lp2

vl

1− v(1− d)lp2

]

− 1
p1p2 − l

[
(1− l)(1− (1− d)p1p2)

vp1p2

1− v(1− d)p1p2
− (1− p1p2)(1− (1− d)l)

vl

1− v(1− d)l

]
.
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Appendix A - Common Disaster

To verify that these probabilities are correct, we will check to see that they sum to one.

∞∑
n2=0

∞∑
n1=0

P (KD
1 = n1,K

D
2 = n2) =

∞∑
n2=0

(
n2−1∑
n1=0

P (KD
1 = n1,K

D
2 = n2) + P (KD

1 = n2,K
D
2 = n2) +

∞∑
n1=n2+1

P (KD
1 = n1,K

D
2 = n2)

)

=
∞∑

n2=1

n2−1∑
n1=0

[(1− d)n2pn1
1 pn2

2 (1− p1)(1− (1− d)p2)]

+
∞∑

n2=0

[(1− d)n2pn1
1 pn2

2 [1− (1− d)p1 − (1− d)p2 + (1− d)p1p2]]

+
∞∑

n2=0

∞∑
n1=n2+1

[(1− d)n1pn1
1 pn2

2 (1− p2)(1− (1− d)p1]]

= (1− p1)(1− (1− d)p2)
∞∑

n2=1

[(1− d)n2pn2
2 ]

n2−1∑
n1=0

pn−1
1

+
1− (1− d)p1 − (1− d)p2 + (1− d)p1p2

1− (1− d)p1p2

+ (1− p2)(1− (1− d)p1)
∞∑

n2=0

pn2
2

∞∑
n1=n2+1

(1− d)n1pn1
1

Solve the inner summations

= (1− p1)(1− (1− d)p2)
∞∑

n2=1

(1− d)n2pn2
2

1− pn2
1

1− p1

+
1− (1− d)p1 − (1− d)p2 + (1− d)p1p2

1− (1− d)p1p2

+ (1− p2)(1− (1− d)p1)
∞∑

n2=0

pn2
2

(1− d)n2+1pn2+1
1

1− (1− d)p1

Solve the inner summations

= (1− (1− d)p2)
∞∑

n2=1

[(1− d)n2pn2
2 − (1− d)n2pn2

1 pn2
2 ]

+
1− (1− d)p1 − (1− d)p2 + (1− d)p1p2

1− (1− d)p1p2

+ (1− p2)(1− d)p1

∞∑
n2=0

(1− d)n2pn2
1 pn2

2

= (1− (1− d)p2)
[

(1− d)p2

1− (1− d)p2
− (1− d)p1p2

1− (1− d)p1p2

]

+
1− (1− d)p1 − (1− d)p2 + (1− d)p1p2

1− (1− d)p1p2

+ (1− d)p1(1− p2)
1

1− (1− d)p1p2

17



Reduce over a common denominator

=
1

1− (1− d)p1p2
[(1− d)p2[1− (1− d)p1p2]− (1− d)p1p2[1− (1− d)p2]

+ 1− (1− d)p1 − (1− d)p2 + (1− d)p1p2 + (1− d)p1(1− p2)]

=
1

1− (1− d)p1p2
[1− (1− d)p1p2]

= 1.

Appendix B - Life Lengthening

To verify that these probabilities are correct, check to see that they sum to one.

∞∑
n2=0

∞∑
n1=0

P (KL
1 = n1, K

L
2 = n2)

=
∞∑

n2=0

[
n2∑

n1=0

q1q2(1− l)
pn1+1
1 pn2+1

2 − pn2−n1
2 ln1+1

p1p2 − l

+
∞∑

n1=n2+1

q1q2(1− l)
pn1+1
1 pn2+1

2 − pn1−n2
1 ln2+1

p1p2 − l

]

=
∞∑

n2=0

[
q1q2(1− l)
p1p2 − l

n2∑
n1=0

pn1+1
1 pn2+1

2 − pn2−n1
2 ln2+1

+
q1q2(1− l)
p1p2 − l

∞∑
n1=n2+1

pn1+1
1 pn2+1

2 − pn1−n2
1 ln2+1

]

Solve the inner summations

=
∞∑

n2=0

[
q1q2(1− l)
p1p2 − l

(
pn2+1
2

p1 − pn2+2
1

1− p1
−

pn2
2 l − ln2+2

p2

1− l
p2

)

+
q1q2(1− l)
p1p2 − l

(
pn2+2
1 pn2+1

2

1− p1
− p1l

n2+1

1− p1

)]

Reduce over a common denominator

=
q1q2(1− l)
p1p2 − l

[
p1p2

(1− p1)(1− p2)
−

∞∑
n2=0

pn2+1
2 l − ln2+2

p2 − l
− p1l

(1− p1)(1− l)

]

=
q1q2(1− l)
p1p2 − l

[
p1p2

q1q2
− 1

p2 − l

(
p2l

q2
− l2

1− l

)
− p1l

q1(1− l)

]

Simplify,

=
1

p1p2 − l

[
p1p2(1− l)− 1

p2 − l
(q1p2l(1− l)− q1q2l

2)− p1q2l

]

=
1

p1p2 − l

[
p1p2(1− l)− p1(1− p2)l − (1− p1)l

p2 − l
(p2(1− l)− (1− p2)l)

]

=
1

p1p2 − l

[
p1p2 − p1l − (1− p1l

p2 − l
[p2 − p2l − l + p2l

]
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Cancel terms

=
1

p1p2 − l
[p1p2 − p1l − l + p1l]

=
1

p1p2 − l
[p1p2 − l]

= 1.
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Appendix C - Graphs

All graphs refer to values of p1, p2 = 0.5 and v = 0.25.

Figure 1: Graph of Axy with common disaster.

Figure 2: Graph of Axy with common disaster.

Figure 3: Graph of kpxy with life lengthening, k = 1.

20



Figure 4: Graph of kpxy with life lengthening, n = 1.

Figure 5: Graph of Axy with life lengthening.

Figure 6: Graph of Axy with life lengthening. For l = .5 and beyond
the function is undefined due to the chosen values of p1, p2, and v. l = .25
is also undefined but interpolated above.
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